Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (5): 382-387    DOI: 1005-4537(2009)05-0382-06
  研究报告 本期目录 | 过刊浏览 |
中碳钢在海水中阴极保护紫铜的二维有限元法计算研究
王巍1;2;孙虎元1;孙立娟1;王顺1;2
1. 中国科学院海洋研究所 青岛 266071
2. 中国科学院研究生院 北京 100049
2-DIMENSIONAL FINITE ELEMENT METHOD FOR CATHODIC PROTECTION OF COPPER BY MEDIUM CARBON STEEL IN SEAWATER
WANG Wei1;2; SUN Huyuan1 SUN Lijuan1 WANG Shun1;2
1. Institute of Oceanology;Chinese Academy of Sciences; Qingdao 266071
2. Graduate University of Chinese Academy of Sciences; Beijing 100049
全文: PDF(2432 KB)  
摘要: 

对于中碳钢在海水中作为牺牲阳极阴极保护紫铜而建立了6个二 维物理模型。对Laplace方程进行了弱形式推导以便于有限元法计算。用有限元法模拟计算了各物理模型阴极保护体系的电位分布,并进行实验验证。结果表明,二维有限元法能很好地模拟该阴极保护体系的电位分布。在小范围内中碳钢和紫铜电偶对的距离远近对电位分布影响不大。各模型中具有代表性的X轴、Y轴方向的电位模拟计算值与实测值接近。中碳钢阴极保护紫铜具有可行性,有限元法计算能够为其阴极保护设计提供依据。

关键词 阴极保护有限元中碳钢紫铜    
Abstract

Six different 2-D physical models for cathodic protection of copper by medium carbon steel as sacrificial anode in seawater are built in this paper. Weak form of Laplace equation was deduced to make finite element method (FEM) numerical calculation convenient. Then, potential distribution of various physical models was computed by FEM, and followed by experimental measurements for validation. The results show clearly that potential distribution of the cathodic protection system could be well simulated by the 2-D FEM solution. The distance of the galvanic couples is not a key factor influencing potential distribution in small range. Typical simulation data (along X-axis and Y-axis) of different models are consistent with the experimentally measured results. Therefore, it should be feasible to cathodically protect copper with medium carbon steel as sacrificial anode, and FEM could afford well a basis for cathodic protection design.

Key wordscathodic protection    finite element method (FEM)    medium carbon steel    copper
收稿日期: 2008-06-04     
ZTFLH: 

TG174.41

 
基金资助:

国家自然科学基金项目(40776044),中国科学院知识创新工程重要方向项目(KZCX2-YW-210)资助

通讯作者: 孙虎元     E-mail: sun@ms.qdio.ac.cn
Corresponding author: SUN Huyuan     E-mail: sun@ms.qdio.ac.cn
作者简介: 王巍,1982年生,男,硕士,研究方向为海洋腐蚀与防护

引用本文:

王巍 孙虎元 孙立娟 王顺. 中碳钢在海水中阴极保护紫铜的二维有限元法计算研究[J]. 中国腐蚀与防护学报, 2009, 29(5): 382-387.
YU Wei, XUN Hu-Yuan, XUN Li-Juan, YU Shun. 2-DIMENSIONAL FINITE ELEMENT METHOD FOR CATHODIC PROTECTION OF COPPER BY MEDIUM CARBON STEEL IN SEAWATER. J Chin Soc Corr Pro, 2009, 29(5): 382-387.

链接本文:

https://www.jcscp.org/CN/1005-4537(2009)05-0382-06      或      https://www.jcscp.org/CN/Y2009/V29/I5/382

[1] Brichau F, Deconinck J. A numerical model for cathodic protection of buried pipes [J]. Corrosion, 1994, 50(1): 39-49
[2] Rabiot D, Dalard F, Rameau J J, et al. Study of sacrificial anode cathodic protection of buried tanks: numerical modeling [J].J. Appl. Electrochem., 1999, 29: 541-550
[3] Harriman K, Gavaghan D J, Houston P, et al. Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. An E reaction at a channel microband electrode [J]. Electrochem.Commun., 2000, 2: 567-575
[4] Khaleel M A, Lin Z, Singh P, et al. A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC [J]. J. Power Sources, 2004, 130: 136-148
[5] Low C T J, Roberts E P L, Walsh F C. Numerical simulation of the current, potential and concentration distributions along the cathode of a rotating cylinder Hull cell [J]. Electrochem. Acta, 2007, 52:3831-3840
[6] Munn R S, Devereux O F. Numerical modeling and solution of galvanic corrosion systems. 1. governing differential equation and electrodic boundary conditions [J]. Corrosion, 1991,47(8): 612-618
[7] Munn R S, Devereux O F. Numerical modeling and solution of galvanic corrosion systems. 2. finite-element formulation and descriptive examples [J]. Corrosion, 1991, 47(8): 618-634
[8] Qiu F, Xu N X. Potential distribution on cathodically protection external tank bottom [J]. J. Chin. Soc. Corros. Prot.,1996, 16(1): 29-36
    (邱枫,徐乃欣. 钢质贮罐底板外侧阴极保护时的电位分布 [J].中国腐蚀与防护学报, 1996, 16(1): 29-36)
[9] Qiu F, Xu N X. Potential distribution on cathodically protected steel pipe lines [J]. J. Chin. Soc. Corros.Prot., 1997, 17(1): 12-18
    (邱枫,徐乃欣. 码头钢管桩阴极保护时的电位分布 [J]. 中国腐蚀与防护学报, 1997, 17(1): 12-18)
[10] Lim C S, Lee H I, Shin S B, et al. Evaluation of technical feasibility on applying calcareous deposit coatings to ship ballast tanks [J]. Corros. Rev., 2000, 18(2-3): 181-193
[11] Muehlenkamp E B, Koretsky M D, Westall J C. Effect of moisture on the spatial uniformity of cathodic protection of steel in reinforced concrete [J]. Corrosion, 2005, 61(6): 519-533
[12] Bortels L, Dorochenko A, Van den Bossche B, et al.Three-dimensional boundary element method and finite element method simulations applied to stray current interference problems. A unique coupling mechanism that takes the best of both methods [J]. Corrosion, 2007, 63(6):561-576
[13] Wang A P, Du M, Lu C S, et al. Finite element method for an offshore platform with complex nodes with a cathodic protection system [J]. Period. Ocean Univ. Chin., 2007, 37(1): 129-134
     (王爱萍,杜敏,陆长山等. 海洋平台复杂节点阴极保护电位分布的有限元法计算 [J]. 中国海洋大学学报,2007,37(1):129-134)
[14] Wang A P, Du M, Wang Q Z, et al.Construction of three-dimensional finite element model for complicated cathodic protection system [J]. Electrochemistry, 2007,13(4): 360-366
[15] Cao S S, Sun J X. Optimization model of the cathodic protection system [J]. J. Chin. Soc. Corros. Prot., 2007,27(2): 114-118
     (曹圣山,孙吉星. 阴极保护设计问题的优化模型 [J]. 中国腐蚀与防护学报,2007, 27(2): 114-118)
[16] Du Y X, Zhang G Z. Regional cathodic protection in pump stations [J]. Corros. Prot., 2006, 27(8): 417-421
     (杜艳霞, 张国忠. 输油泵站区域性阴极保护实施中的问题[J]. 腐蚀与防护,2006, 27(8): 417-421)
[17] Du Y X, Zhang G Z, Liu G. Influence of anodic electric field on cathodic protection potential distribution of external tank bottom [J]. Corros. Sci. Prot.Technol., 2006, 18(5): 383-385
     (杜艳霞, 张国忠, 刘刚. 阳极电场对罐底外侧阴极保护电位分布的影响[J]. 腐蚀科学与防护技术,2006, 18(5): 383-385)
[18] Du Y X, Zhang G Z. Numerical modeling of cathodic protection potential distribution on the exterior of tank bottom [J]. J.Chin. Soc. Corros. Prot., 2006, 26(6): 346-350
     (杜艳霞,张国忠. 储罐底板外侧阴极保护电位分布的数值模拟 [J]. 中国腐蚀与防护学报, 2006, 26(6): 346-350)
[19] Du Y X, Zhang G Z, Liu G. Potential distributions on external tank bottom under cathodic protection of deep well anode [J]. Electrochemistry, 2006, 12(1): 55-59
     (杜艳霞, 张国忠, 刘刚. 罐底外侧深井阳极阴极保护电位分布规律研究[J]. 电化学, 2006, 12(1): 55-59)
[20] Du Y X, Zhang G Z, Liu G, et al. Simulation of cathodic protection potential distribution on the exterior of storage tank bottom [J]. Acta Metall. Sin., 2007,43(3): 297-302
     (杜艳霞,张国忠,刘刚等. 金属储罐底板外侧阴极保护电位分布的数值模拟[J]. 金属学报,2007, 43(3): 297-302)
[21] Du Y X, Zhang G Z, Li J.Numerical calculation of cathodic protection potential distribution [J]. J. Chin. Soc. Corros. Prot., 2008, 28(1): 53-58
     (杜艳霞,张国忠,李健. 阴极保护电位分布的数值计算[J]. 中国腐蚀与防护学报,2008,28(1):53-58)
[22] Jorcin J B, Blanc C, Pebere N. Galvanic coupling between pure copper and pure aluminum experimental approach and mathematical model [J]. J. Electrochem.Soc., 2008, 155(1): 46-51
[23] Luo Z H, Long P, Yang S W, et al. The sacrificial anode performance of iron-base materials [J]. Corros.Prot., 1999, 20(1): 22-23
     (罗兆红,龙萍,杨世伟等.铁基材料的牺牲阳极性能 [J]. 腐蚀与防护,1999,20(1): 22-23)
[24] Huang J D, Guo W, Liu B, et al. Appliance of iron alloy sacrifice electrode in seawater pipe made of copper or other alloy [J]. China Shiprepair, 2002, (4): 37-38
     (黄佳典,郭伟,刘波等. 铁合金牺牲阳极在铜及其合金海水管路中的应用 [J].中国修船,2002, (4): 37-38)
[25] Wang S, Sun H Y, Sun L J. Performance of iron-based sacrificial anodes in seawater and freshwater [J]. Corros. Prot.,2008, 29(5): 281-283
     (王顺,孙虎元,孙立娟. 海水、淡水中铁基牺牲阳极的性能 [J].腐蚀与防护,2008,29(5): 281-283)
[26] Qiu F, Xu N X. Potential and current distributions on pipelines cathodically protected with ribbon sacrificial anodes [J]. J. Chin.Soc. Corros. Prot., 1997, 17(2): 106-110
     (邱枫,徐乃欣. 用带状牺牲阳极对埋地钢管实施阴极保护时的电位和电流分布[J]. 中国腐蚀与防护学报. 1997, 17(2): 106-110) \par

[1] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[2] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[3] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[4] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[5] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[6] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[7] 邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[8] 寇杰, 张新策, 崔淦, 杨宝安. 储罐底板阴极保护电位分布研究进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[9] 王晓霖, 闫茂成, 舒韵, 孙成, 柯伟. 破损涂层下管线钢的交流电干扰腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[10] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[11] 朱志平,银朝晖,柳森,肖剑峰. 紫铜T2在高浓度H2S模拟环境中的腐蚀行为及预测模型[J]. 中国腐蚀与防护学报, 2015, 35(4): 333-338.
[12] 李波,罗学刚,唐永金,李梓番,杨圣,焦扬. 土壤优势放线菌菌群对紫铜的腐蚀[J]. 中国腐蚀与防护学报, 2015, 35(4): 345-352.
[13] 杨霜,唐囡,闫茂成,赵康文,孙成,许进,于长坤. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[14] 刘在健,王佳,张彭辉,王燕华,张源. 5083铝合金在海水中的腐蚀行为及其阴极保护研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 239-244.
[15] 程旭东,孙连方,曹志烽,朱兴吉. 钢筋非均匀锈蚀导致的混凝土保护层锈胀开裂过程分析[J]. 中国腐蚀与防护学报, 2015, 35(3): 257-264.