Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (4): 333-338    DOI: 10.11902/1005.4537.2014.154
  本期目录 | 过刊浏览 |
紫铜T2在高浓度H2S模拟环境中的腐蚀行为及预测模型
朱志平(),银朝晖,柳森,肖剑峰
Corrosion Behavior and Prediction Model for Copper Exposed in a Simulated High H2S Containing Environment
Zhiping ZHU(),Zhaohui YIN,Sen LIU,Jianfeng XIAO
School of Chemical and Biological Engineering,Changsha University of Science & Technology, Changsha 410114, China
全文: PDF(2118 KB)   HTML
摘要: 

采用SEM,EDS,XRD等研究了紫铜T2在高浓度H2S环境中的腐蚀行为和规律,同时建立了非等间距灰色GM(1,1) 数学模型,并对该模型的精度和合理性进行了检验。结果表明,实验初期腐蚀增重量增加缓慢,后期增加迅速;腐蚀产物出现分层并且产生裂缝;腐蚀产物主要是Cu2S和Cu2O;数学模型具有较好的拟合精度和较高的预测可靠性。

关键词 紫铜H2S腐蚀预测模型    
Abstract

The corrosion behavior of copper exposed in a simulated high H2S containing atmosphere was investigated by weight change measurement, scanning electron microscope with energy dispersive spectrometry and X-ray diffraction, while an non-equal interval grey model GM(1, 1) was established, of which the precision and forecast dependability were evaluated. The results indicates that the weight gain of Cu increase slowly at the initial stage, whereas increase rapidly at the later stage. Surface observation shows that the corrosion products on Cu were layered with cracks. The corrosion products are made up of Cu2S and Cu2O. The model GM(1, 1) exhibits good accuracy of fitting and higher forecast reliability.

Key wordscopper    H2S    corrosion    prediction model
    
基金资助:湖南省自然科学基金项目 (09JJ6067) 和湖南省科技攻关项目 (2010GK3171) 资助

引用本文:

朱志平,银朝晖,柳森,肖剑峰. 紫铜T2在高浓度H2S模拟环境中的腐蚀行为及预测模型[J]. 中国腐蚀与防护学报, 2015, 35(4): 333-338.
Zhiping ZHU, Zhaohui YIN, Sen LIU, Jianfeng XIAO. Corrosion Behavior and Prediction Model for Copper Exposed in a Simulated High H2S Containing Environment. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 333-338.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.154      或      https://www.jcscp.org/CN/Y2015/V35/I4/333

图1  模拟大气腐蚀装置系统
图2  25 ℃,75%RH, 10 mg/m3 H2S环境下紫铜T2腐蚀增重随时间的变化
图3  腐蚀720 h后紫铜T2表面腐蚀产物微观形貌图
图4  腐蚀720 h后紫铜T2腐蚀产物的EDS结果
图5  腐蚀720 h后紫铜T2腐蚀产物的XRD谱
图6  紫铜T2腐蚀增重量随时间的实测值与预测值
Forecast accuracy grade P C
Good >0.95 <0.35
Qualified >0.8 <0.5
Barely qualified >0.7 <0.45
Unqualified ≤0.7 ≥0.65
  
[1] Watanabe M, Takaya M, Handa T, et al. Characterisation of corrosion products formed on copper exposed at indoor and outdoor sites with high H2S concentrations[J]. Corros. Eng. Sci. Technol., 2013, 48(6): 418
[2] Fonseca I T E, Picciochi R, Mendonca M H, et al. The atmospheric corrosion of copper at two sites in Portugal: a comparative study[J]. Corros. Sci., 2004, 46(3): 547
[3] Watanabe M, Hokazono A, Handa T, et al. Corrosion of copper and silver plates by volcanic gases[J]. Corros. Sci., 2006, 48(11): 3759
[4] Liao X N, Cao F H, Zheng L Y, et al. Corrosion behaviour of copper under chloride-containing thin electrolyte layer[J]. Corros. Sci., 2011, 53(10): 3289
[5] Wang P, Sun X L, Ma D W, et al. The investigation and analysis of atmospheric corrosion of power transmission equipment[J]. Corros. Sci. Prot. Technol., 2012, 24(6): 525 (王平, 孙心利, 马东伟等. 输变电设备大气腐蚀情况调查与分析[J]. 腐蚀科学与防护技术, 2012, 24(6): 525)
[6] Meng F N, Di X P, Dong H W, et al. Ppb H2S gas sensing characteristics of Cu2O/CuO sub-microspheres at low-temperature[J]. Sensor. Actuator. B: Chem., 2013, 182: 197
[7] Tan T T M, Fiaud C, Sutter E M M, et al. The atmospheric corrosion of copper by hydrogen sulphide in underground conditions[J]. Corros. Sci., 2003, 45(12): 2787
[8] Deng J L. Basic Method of Grey System[M]. Wuhan: Huzhong University of Science and Technology Press, 2005 (邓聚龙. 灰色系统基本方法[M]. 武汉: 华中科技大学出版社, 2005)
[9] Feng L, Dou L X, Chen Y D. Application of improved grey GM(1, 1) model in coal consumption forecast[J]. Shanxi Coking Coal Sci. Technol., 2012, (7): 34 (冯乐, 窦鲁星, 陈英东. 改进灰色GM(1, 1) 模型在煤炭消费预测中的应用[J]. 山西焦煤科技, 2012, (7): 34)
[10] Salas B V, Wiener M S, Koytchev R Z, et al. Copper corrosion by atmospheric pollutants in the electronics industry[J]. ISRN Corros., 2013, 2013: 1
[11] Tan T T M, Fiaud C, Sutter E M M. Oxide and sulphide layers on copper exposed to H2S containing moist air[J]. Corros. Sci., 2005, 47(7): 1724
[12] Demirkan K, Derkits Jr G E, Fleming D A, et al. Corrosion of Cu under highly corrosive environments[J]. J. Electrochem. Soc., 2010, 157(1): C30
[13] Larson R S. A physical and mathematical model for the atmospheric sulfidation of copper by hydrogen sulfide[J]. J. Electrochem. Soc., 2002, 149(2): B40
[14] Reid M, Punch J, Ryan C, et al. Microstructural development of copper sulfide on copper exposed to humid H2S[J]. J. Electrochem. Soc., 2007, 154(4): C209
[1] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[7] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[9] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[10] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[12] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[14] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[15] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.