Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (3): 220-224    
  研究报告 本期目录 | 过刊浏览 |
低阴极沉积电位对铝合金表面硅烷膜层的影响
徐以兵;何德良;周舟;钟建芳;许 超;崔正丹;曾丽萍
湖南大学化学生物传感与计量学国家重点实验室 长沙 410082
EFFECTS OF LOW CATHODIC POTENTIAL ON ELECTRODEPOSITED SILANE FILMS ON ALUMINUM ALLOY
XU Yibing; HE Deliang; ZHOU Zhou; ZHONG Jianfang; XU Chao; CUI Zhengdan; ZENG Liping
College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082
全文: PDF(1219 KB)  
摘要: 

在低阴极沉积电位条件下,使用表面活性剂改性硅烷溶液,实现了双-1,2-[γ(三乙氧基)硅丙基]四硫化物(BTSPS)在铝合金电极表面的电化学沉积,新的临界沉积电位(NCCP)约为-1.6 V。研究表明,在低阴极沉积电位下铝合金表面能得到更厚、更致密的硅烷膜层,并且在改性后溶液中制备的膜层具有较高的极化阻力。表面活性剂的加入可以降低沉积时析氢的影响,提高硅烷沉积性能。临界沉积电位的降低,使得硅烷覆盖的铝合金电极比临界沉积电位(-0.8 V)下的电极具有更好的抗腐蚀性能。

关键词 铝合金硅烷膜低电位表面活性剂双-1,2-[γ(三乙氧基)硅丙基]四硫化物    
Abstract

Bis-1,2-[triethoxysilylpropyl]tetrasulfide (BTSPS) films have been successfully deposited at low cathodic potential in silane solution modified by surfactant, and a new critical cathodic potential (NCCP) (-1.6 V) has been found. The study indicated the surface morphology of silane films prepared at low cathodic potential were more compact and thicker than those prepared at conventional critical cathodic potential (-0.8 V),and BTSPS films prepared at low cathodic potentials in modified silane solution exhibited obviously higher corrosion resistances in comparison with silane films prepared by conventional electrodeposition method. Hydrogen evolution could be decreased as well as the electrodeposition of silane could be improved while adding the surfactant. Anti-corrosion of films is better as well as a negative shift of the critical cathodic potential.

Key wordsaluminum    silane film    low cathodic potential    surfactant    bis-1,2-[triethoxysilylpropyl]tetrasulfide
收稿日期: 2007-09-11     
ZTFLH: 

TG178

 
通讯作者: 何德良     E-mail: delianghe@163.com
Corresponding author: HE Deliang     E-mail: delianghe@163.com
作者简介: 徐以兵,男,1980年生,硕士生,研究方向为金属环保型防腐蚀预处理

引用本文:

徐以兵 何德良 周舟 钟建芳 许 超 崔正丹 曾丽萍. 低阴极沉积电位对铝合金表面硅烷膜层的影响[J]. 中国腐蚀与防护学报, 2009, 29(3): 220-224.
HE De-Liang, XU Si-Bing, ZHOU Zhou, ZHONG Jian-Fang, XU Tiao, CUI Zheng-Dan. EFFECTS OF LOW CATHODIC POTENTIAL ON ELECTRODEPOSITED SILANE FILMS ON ALUMINUM ALLOY. J Chin Soc Corr Pro, 2009, 29(3): 220-224.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I3/220

[1] Subramanian V, Van Ooij W J. Effect of amine functional group on corrosion rate of iron coated with films of organofunctional silanes[J]. Corrosion, 1998, 54(3): 204-215
[2] Zhu D, Van Ooij W J. Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl]-amine[J]. Electrochim.Acta, 2004, 49: 1113-1125
[3] Woo H, Reucroft P J, Jacob R J.Electrodeposition of organofunctional silanes and its influence on structural adhesive bonding[J]. J. Adhes. Sci.Technol., 1993, 7(7): 681-697
[4] Zhu D, Van Ooij W J. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl] amine and vinyltriacetoxysilane[J]. Prog. Org. Coat., 2004, 49: 42-53
[5] Montemor M F, Cabral A M, Zheludkevich M L, et al. The corrosion resistance of hot dip galvanized steel pretreated with bis-functional silanes modified with microsilica[J]. Surf. Coat. Technol., 2006, 200: 2875-2885
[6] Palanivel V, Huang Y, Van Ooij W J. Effects of addition of corrosion inhibitors to silane films on the performance of AA2024-T3 in a 0.5M NaCl solution[J]. Prog. Org. Coat., 2005, 53: 153-168
[7] Shacham R, Avnir D, Mandler D. Electrodeposition of methylated sol-gel films on conducting surfaces[J]. Adv. Mater., 1999, 11: 384-388
[8] Sheffer M, Groysman A, Mandler D. Electrodeposition of sol-gel films on Al for corrosion protection[J]. Corros. Sci., 2003, 45: 2893-2904
[9] Gandhi J S, Van Ooij W J. Improved corrosion protection of aluminum alloys by electrodeposited silanes[J]. J. Mater. Eng.Perform, 2004, 13(4): 475-480
[10] Hu J M , Liu L , Zhang J Q, et al.Electrodeposition of silane films on aluminum alloys for corrosion protection[J]. Prog. Org. Coat., 2007, 58: 265-271
[11] Hu J M, Liu L, Zhang J Q, et al. Effects of electrodeposition potential on the corrosion properties of bis-1, 2-[triethoxysilyl]ethane films on aluminum alloy[J]. Electrochim. Acta, 2006, 51: 3944-3949

[1] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[6] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[7] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[8] 陈高红,胡远森,于美,刘建华,李国爱. 硫酸阳极化对2E12铝合金力学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[9] 曹敏, 刘莉, 余钟芬, 李瑛, 王福会. 2A02铝合金在模拟海洋大气环境中的剥蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 502-510.
[10] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[11] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[12] 郝利新, 贾瑞灵, 张慧霞, 张伟, 赵婷, 翟熙伟. 7A52铝合金双丝MIG焊接头的不均匀性对其表面微弧氧化膜腐蚀防护作用的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.
[13] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[14] 崔晓飞, 谭晓明, 王德, 钱昂. 铝合金表面聚氨酯涂层在加速实验条件下的老化机制及规律研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[15] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.