Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (1): 59-63    
  研究报告 本期目录 | 过刊浏览 |
铝合金稀土硝酸盐磷化的电化学行为
张圣麟1;2;李朝阳1;陈华辉2;荆树科1;陈燕燕1
1.河南师范大学化学与环境科学学院 新乡 453007
2.中国矿业大学机电与信息工程学院 北京 100083
ELECTROCHEMICAL CHARACTERISTICS OF PHOSPHATING ACCELERATED BY RARE EARTH NITRATE ON ALUMINUM ALLOY
ZHANG Shenglin1;2;LI Chaoyang1;CHEN Huahui2;JING Shuke1;CHEN Yanyan1
1.Chemistry & Environmental Science College; Henan Normal University;Xinxiang 453007
2.School of Mechanical; Electronic and Information Engineering; China University of Mining & Technology; Beijing 100083
全文: PDF(1301 KB)  
摘要: 

采用电化学测试和扫描电镜等方法研究了硝酸铈对6061 铝合金磷化过程及磷化膜形貌的影响。结果表明,硝酸铈的加入改变了铝合金基体与磷化液之间液固界面间的初始电位;硝酸铈吸附在铝合金表面上形成凝胶,成为磷酸盐晶体形成的良好晶核,磷化晶粒细化,生成较为致密的磷化膜,膜的耐蚀性得到提高。硝酸铈使铝合金达到最高电位的时间缩短,阴极极化电流密度增大,磷化速度加快。硝酸铈在整个铝合金磷化过程中起到了成核和促进的作用。在本实验条件下,最佳硝酸盐含量为20 mg/L~40 mg/L。

关键词 稀土硝酸盐(REN)磷化膜铝合金形核剂;促进剂    
Abstract

The effect of cerium nitrate on the phosphating process and the phosphate coating morphology of 6061Al alloy was investigated by electrochemical measurements and scanning electron microscopy. The addition of cerium nitrate changed the initial potentials of interface between aluminum alloy substrate and phosphating solution. Cerium nitrate was adsorbed on the surface of aluminum substrates to form gel. These gel particles were good crystal pits to form phosphate crystal grains and acted as nucleation agent, resulting in phosphate crystal grains to be fined, phosphate coating to be compacted and the corrosion resistance of coating to be improved. Cerium nitrate made time shortened at which the highest potential value of aluminum alloy was achieved, the current density of cathodic polarization was increased and phosphating velocity was expedited. Cerium nitrate acted as nucleation agent and accelerator in whole phosphating process of aluminum alloy. Under this experimental condition, the optimal content of REN is 20 mg/L-40 mg/L.

Key wordsRare earth nitrate (REN)    Phosphate coating    Aluminum alloy    Nucleation agent    Accelerator
收稿日期: 2007-04-16     
ZTFLH: 

TG178

 
基金资助:

河南省科技攻关研究项目(0424240074);河南省自然科学研究项目(200510476009)

通讯作者: 张圣麟     E-mail: zslhnxx@yahoo.com.cn
Corresponding author: ZHANG Shenglin     E-mail: zslhnxx@yahoo.com.cn

引用本文:

张圣麟 李朝阳 陈华辉 荆树科 陈燕燕. 铝合金稀土硝酸盐磷化的电化学行为[J]. 中国腐蚀与防护学报, 2009, 29(1): 59-63.

链接本文:

https://www.jcscp.org/CN/Y2009/V29/I1/59

[1] Yu X W,Cao C N,Lin H C. Development of rare earth metal conversion coatings on aluminum alloys[J].J. Chin. Soc. Corros.Prot.,2000,20(5):298-307
(于兴文,曹楚南,林海潮. 铝合金表面稀土转化膜研究进展[J].中国腐蚀与防护学报,2000,20(5):298-307)
[2] Zhao M,Wu S S,An P,et al. Investigation on chromium-free conversion coating on AZ91D magnesium alloy[J]. J. Chin. Soc. Corros. Prot.,2007,27(1):17-22
(赵明,吴树森,安萍等. AZ91D镁合金表面无铬转化膜的研究[J]. 中国腐蚀与防护学报,2007,27(1):17-22 )
[3] Sun X,Susac D,Li R. Some observations for effects of copper on zinc phosphate conversion coatings on aluminum surfaces[J]. Surf. Coat. Technol.,2002,30(4):46-50
[4] Badawy W A,Al-Kharafi F M,El-Azab A S. Electrochemical behaviour and corrosion inhibition of Al,Al-6061  and Al-Cu in neutral aqueous solutions [J]. Corros. Sci., 1999,41(4):709-727
[5] Wang C,Jiang F,Lin H C. Aluminum alloy surface chromate treatment and substitution craft research progress [J]. Corros. Sci. Prot. Technol.,2001,13(6):347-350
(王成,江峰,林海潮. 铝合金表面铬酸盐处理及替代工艺研究进展[J]. 腐蚀科学与防护技术,2001,13(6):347-350)
[6] Whitten Mary,C Valicia J Burke. Simultaneous acid cat- alysis and in situ phosphatization using a polyester-melamine paint: a surface phosphatization study [J]. Ind. Eng. Chem. Res.,2003,42(16):3671-3679
[7] Akhtar A S,Susac D,Wong P C,et al. The effect of pH and role Ni$^{2+}$ in zinc phosphating of 2024-Al alloy[J].Appl. Surf. Sci.,2006,253 (5): 502-509
[8] Wu S Z. Chemical Conversion Coating [M]. Beijing:China Machine Press,1988
(吴素珍. 化学转化膜[M]. 北京:机械工业出版社,1988)
[9] Ji T H,Huang J H. The research of the $\phi$-t curve in phos- phating process accelerated by normal (low) temperature[J]. Electroplat. Pollut. Control,1994,14(4):11-14
(暨调和,黄季煌. 常(低)温加速磷化过程Φ-t曲线的研究
[J].电镀与环保,1994,14(4):11-14)
[10] Kuang J C. Research on mechanism of zinc phosphating accelerated by rare earth nitrate[J]. Chin. Rare Earth, 2006,27(1):26-29
(邝钜炽.锌系磷化的稀土促进成膜机理研究[J]. 稀土,2006, 27(1):26-29)
[11] Kuang J C. Promotion role of rare earth nitrate in phosphating[J]. Chin. Rare Earth,2006,27(1):80-82
(邝钜炽. 稀土硝酸盐对磷化过程的促进作用[J]. 稀土,2006, 27(1):80-82)
[12] Lei Z J,Hu C Z. Metal Phosphating Treatment [M]. Beijing: China Machine Press,1992
(雷作缄,胡楚珍. 金属的磷化处理[M]. 北京:机械工业出版社,1992)
[13] Cao C N. Corrosion Electrochemistry [M].Beijing: Chemistry Industry Press,1994
(曹楚南. 腐蚀电化学[M]. 北京:化学工业出版社,1994)

[1] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[6] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[7] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[8] 陈高红,胡远森,于美,刘建华,李国爱. 硫酸阳极化对2E12铝合金力学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[9] 曹敏, 刘莉, 余钟芬, 李瑛, 王福会. 2A02铝合金在模拟海洋大气环境中的剥蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 502-510.
[10] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[11] 郝利新, 贾瑞灵, 张慧霞, 张伟, 赵婷, 翟熙伟. 7A52铝合金双丝MIG焊接头的不均匀性对其表面微弧氧化膜腐蚀防护作用的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.
[12] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[13] 崔晓飞, 谭晓明, 王德, 钱昂. 铝合金表面聚氨酯涂层在加速实验条件下的老化机制及规律研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[14] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[15] 赵苇杭, 王浩伟, 蔡光义, 董泽华. AA6061铝合金在含盐薄液膜下的局部腐蚀与缓蚀机理[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.