Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1331-1340     CSTR: 32134.14.1005.4537.2024.387      DOI: 10.11902/1005.4537.2024.387
  研究报告 本期目录 | 过刊浏览 |
敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响
何武豪1, 刘阳2, 杨思懿2, 张韶栋3, 吴伟2,3,4(), 张俊喜2
1 南昌工学院机械与车辆工程学院 南昌 330108
2 上海电力大学环境与化学工程学院 上海市电力材料防护与新材料重点实验室 上海 201306
3 江西恒大高新技术股份有限公司 南昌 330096
4 南昌大学物理与材料学院 南昌 330031
Effect of Sensitization Treatment on Electrochemical Behavior and Intergranular Corrosion of Conventional and Additively Manufactured 316L Stainless Steels
HE Wuhao1, LIU Yang2, YANG Siyi2, ZHANG Shaodong3, WU Wei2,3,4(), ZHANG Junxi2
1 School of Mechanical and Vehicle Engineering, Nanchang Institute of Science & Technology, Nanchang 330108, China
2 Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 201306, China
3 Jiangxi Hengda Hi-Tech Co., Ltd., Nanchang 330096, China
4 School of Physics and Materials, Nanchang University, Nanchang 330031, China
引用本文:

何武豪, 刘阳, 杨思懿, 张韶栋, 吴伟, 张俊喜. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
Wuhao HE, Yang LIU, Siyi YANG, Shaodong ZHANG, Wei WU, Junxi ZHANG. Effect of Sensitization Treatment on Electrochemical Behavior and Intergranular Corrosion of Conventional and Additively Manufactured 316L Stainless Steels[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1331-1340.

全文: PDF(17475 KB)   HTML
摘要: 

通过组织分析、电化学测试和各种表征手段对比研究了传统工艺和选区激光熔化(SLM)316L奥氏体不锈钢的耐点蚀能力和晶间腐蚀敏感性,阐明了敏化处理时间对316L不锈钢电化学行为的影响机制。研究表明,未经过处理时,传统和SLM 316L不锈钢耐点蚀能力相当,晶间腐蚀敏感性均较低。敏化处理导致两种316L不锈钢的点蚀电位有不同程度的降低,且经过长时间敏化后,SLM 316L不锈钢的耐点蚀性能显著低于传统316L不锈钢。同时,经过敏化后,两种316L不锈钢的晶间腐蚀敏感性有所升高,且随着敏化时间的延长,传统316L不锈钢的晶间腐蚀敏感性增长速度更快。微观形貌和成分分析表明,在晶间和晶粒内部都出现了沿着夹杂物/碳化物等优先溶解的特征,显然二者之间的电化学性质差异与两种不锈钢的微观组织结构有直接关联。

关键词 增材制造奥氏体不锈钢动电位极化电化学阻抗谱晶间腐蚀    
Abstract

The pitting corrosion resistance and intergranular corrosion (IGC) sensitivity of conventional and selective laser melted (SLM) 316L austenitic stainless steels were comparatively assessed via electrochemical measurements, microstructure analysis, and various characterization methods. The results indicate that both the as received conventional and SLM 316L stainless steel exhibit similar pitting corrosion resistance and low intergranular corrosion sensitivity. However after being subjected to sensitization treatment, the types of 316L stainless steel present varying degrees of reduction in the pitting potential, and with the increasing sensitization time, the SLM 316L stainless steel shows significantly lower pitting corrosion resistance than the conventional 316L stainless steel. Additionally, after sensitization treated, the IGC sensitivity of both types of 316L stainless steel increases, with the conventional 316L stainless steel showing a faster growth rate in IGC sensitivity as the sensitization time extends. Micromorphology and compositional analysis indicate that preferential dissolution occur along inclusions or carbides both intergranularly and within the grains. This shows that the difference in electrochemical properties between the two stainless steels is directly related to their different microstructures.

Key wordsadditive manufacturing    austenitic stainless steel    potentiodynamic polarization    EIS    intergranular corrosion
收稿日期: 2024-11-28      32134.14.1005.4537.2024.387
ZTFLH:  TG172  
基金资助:江西省教育厅科学技术研究项目(GJJ2202904)
通讯作者: 吴伟,E-mail:wuweicorr@shiep.edu.cn,研究方向为能源电力材料腐蚀与防护
Corresponding author: WU Wei, E-mail: wuweicorr@shiep.edu.cn
作者简介: 何武豪,男,1988年生,硕士,讲师
图1  敏化0、0.5、1、4和10 h后的传统及SLM 316L不锈钢的IPF图
图2  敏化0、0.5、1、4和10 h后传统和SLM 316L不锈钢的TEM图
图3  传统和SLM 316L 不锈钢的动电位极化曲线
图4  传统和SLM 316L不锈钢的电化学参数
图5  传统和SLM 316L不锈钢的EIS谱
图6  传统和SLM 316L不锈钢的EIS拟合等效电路及拟合的Rf + Rct值
图7  传统和SLM 316L不锈钢通过DL-EPR测试获得的电位与电流密度曲线
图8  两种316L不锈钢敏化程度与敏化时间的关系图
图9  传统316L不锈钢经过DL-EPR测试后的表面形貌图
图10  敏化10 h后的传统316L不锈钢在DL-EPR测试后的EDS分析
图11  SLM 316L不锈钢经过DL-EPR测试后的表面形貌图
[1] Liu W, Ren Z L, Wang G, et al. A-TIG weld shaping and joint mechanical properties of austenitic stainless steel [J]. Trans. China Weld. Inst., 2024, 45(10): 105
[1] 刘 伟, 任泽良, 王 刚 等. 奥氏体不锈钢A-TIG焊缝成形及接头力学性能 [J]. 焊接学报, 2024, 45(10): 105
[2] Li M Y, Dong Z P, Kang D M, et al. Analysis of residual stress of austenitic stainless steel heat exchange tube expansion [J]. Petro-Chem. Equip., 2024, 53(5): 38
[2] 李明远, 董中鹏, 康东明 等. 奥氏体不锈钢换热管胀接残余应力分析 [J]. 石油化工设备, 2024, 53(5): 38
[3] Sun X G, Han X H, Zhang X S, et al. Corrosion resistance and environmentally-friendly chemical passivation of welded joints for ultra-low carbon austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 345
[3] 孙晓光, 韩晓辉, 张星爽 等. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究 [J]. 中国腐蚀与防护学报, 2019, 39: 345
doi: 10.11902/1005.4537.2019.054
[4] Geng Z Z, Zhang Y Z, Du X J, et al. Synergistic effect of S2- and Cl- on corrosion and passivation behavior of 316L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 797
[4] 耿真真, 张钰柱, 杜小将 等. S2-和Cl-对316L奥氏体不锈钢的腐蚀钝化行为的协同作用 [J]. 中国腐蚀与防护学报, 2024, 44: 797
doi: 10.11902/1005.4537.2023.236
[5] Tao X, Qi J H, Rainforth M, et al. On the interstitial induced lattice inhomogeneities in nitrogen-expanded austenite [J]. Scrip. Mater., 2020, 185: 146
[6] Li C, Wang Q T, Yang C G, et al. Corrosion behavior of 904L super-austenitic stainless steel in simulated primary water in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 716
[6] 李 禅, 王庆田, 杨承刚 等. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 716
[7] Liu J, Li X L, Zhu C W, et al. Prediction of critical pitting temperature of 316L stainless steel in gas field environments by artificial neutral network [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 205
[7] 刘 静, 李晓禄, 朱崇伟 等. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度 [J]. 中国腐蚀与防护学报, 2016, 36: 205
[8] Gao J X, Cao H, Kuang W J, et al. Research progress on irradiation assisted stress corrosion cracking behavior and mechanism of austenitic steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 835
[8] 高俊宣, 曹 晗, 匡文军 等. 奥氏体钢辐照促进应力腐蚀开裂行为机制的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 835
doi: 10.11902/1005.4537.2023.287
[9] Liang Z Y, Xu Y M, Wang S, et al. Corrosion behavior of heat-resistant alloys in high temperature CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 613
[9] 梁志远, 徐一鸣, 王 硕 等. 高等级合金CO2环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 613
doi: 10.11902/1005.4537.2021.210
[10] Kolli S, Javaheri V, Ohligschläger T, et al. The importance of steel chemistry and thermal history on the sensitization behavior in austenitic stainless steels: Experimental and modeling assessment [J]. Mater. Today Commun., 2020, 24: 101088
[11] Qian J, Chen C F, Yu H B, et al. The influence and the mechanism of the precipitate/austenite interfacial C-enrichment on the intergranular corrosion sensitivity in 310 S stainless steel [J]. Corros. Sci., 2016, 111: 352
[12] Wang J X, Shi W, Xiang S, et al. Study of the corrosion behaviour of sensitized 904L austenitic stainless steel in Cl- solution [J]. Corros. Sci., 2021, 181: 109234
[13] Congleton J, Yang W. The effect of applied potential on the stress corrosion cracking of sensitized type 316 stainless steel in high temperature water [J]. Corros. Sci., 1995, 37: 429
[14] Abduluyahed A A, Rożniatowski K, Kurzydłowski K J. Free surface contribution to sensitization of an austenitic stainless steel [J]. J. Mater. Process. Technol., 2001, 109(1): 2
[15] Srinivasan N, Kain V, Birbilis N, et al. Near boundary gradient zone and sensitization control in austenitic stainless steel [J]. Corros. Sci., 2015, 100: 544
[16] Barla N A, Ghosh P K, Das S, et al. Simulated stress-induced sensitization study for the heat-affected zone of the 304LN stainless steel weld using a thermomechanical simulator [J]. Metall. Mater. Trans., 2019, 50A: 1283
[17] Lewis A C, Bingert J F, Rowenhorst D J, et al. Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel [J]. Mater. Sci. Eng., 2006, 418A: 11
[18] Peckner D, Bernstein I M. Handbook of Stainless Steels [M]. New York: McGraw-Hill Company, 1977
[19] Yao X Z, Li H J, Yang Z W, et al. Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition [J]. Trans. China Weld. Inst., 2024, 45(6): 12
[19] 姚兴中, 李会军, 杨振文 等. 微量TiC粉末合金化改善电弧增材制造Ti-6Al-4V合金的组织和性能 [J]. 焊接学报, 2024, 45(6): 12
[20] Shang Q, Man C, Pang K, et al. Mechanism of post-heat treatment on intergranular corrosion behavior of SLM-316L stainless steel with different carbon contents [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1273
[20] 商 强, 满 成, 逄 昆 等. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1273
[21] Duan Z W, Man C, Dong C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: pitting mechanism induced by gas pores [J]. Corros. Sci., 2020, 167: 108520
[22] Shi H C, Huang A M, Huang H, 30 Study on microstructure and fracture toughness of welded joint of CrMo/Q420qE high performance bridge steel [J]. Metal Mater. Metall. Eng., 2024, 52(6): 12
[22] 石红昌, 黄安明, 黄 辉. 30CrMo/Q420qE桥梁钢焊接接头显微组织及断裂韧性研究 [J]. 金属材料与冶金工程, 2024, 52(6): 12
[23] Revilla R I, Van Calster M, Raes M, et al. Microstructure and corrosion behavior of 316L stainless steel prepared using different additive manufacturing methods: a comparative study bringing insights into the impact of microstructure on their passivity [J]. Corros. Sci., 2020, 176: 108914
[24] Kong D C. Cellular dislocation structure effects on the strength, toughness and corrosion resistance of selective laser melted 316L stainless steel [D]. Beijing: University of Science and Technology Beijing, 2022
[24] 孔德成. 胞状位错结构对激光选区熔化316L不锈钢强韧性的影响与耐蚀机理研究 [D]. 北京: 北京科技大学, 2022
[25] Zhang X Q, Li Y P, Tang N, et al. Corrosion behaviour of CoCrMo alloys in 2wt% sulphuric acid solution [J]. Electrochim. Acta, 2014, 125: 543
[26] Liu G M, Liu Y Y, Cheng Y W, et al. The intergranular corrosion susceptibility of metastable austenitic Cr-Mn-Ni-N-Cu high-strength stainless steel under various heat treatments [J]. Materials, 2019, 12: 1385
[27] Dai H L, Zhang S Y, Li Y J, et al. Stress corrosion cracking behavior of 316 L manufactured by different additive manufacturing techniques in hydrofluoric acid vapor [J]. J. Mater. Sci. Technol., 2024, 191: 33
[28] Zhang T Y, Wu J S, Guo H L, et al. Influence of HSO 3 - on passive film composition and corrosion resistance of 2205 duplex stainless steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 535
[28] 张天翼, 吴俊升, 郭海龙 等. 模拟海水中HSO 3 - 对2205双相不锈钢钝化膜成分及耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 535
doi: 10.11902/1005.4537.2016.190
[29] Chen Y, Chen X, Liu T, et al. Effect of potential on electrochemical corrosion behavior of 316L stainless steel in borate buffer solution [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 137
[29] 陈 宇, 陈 旭, 刘 彤 等. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响 [J]. 中国腐蚀与防护学报, 2015, 35: 137
[30] Qiang S M, Jiang L Z, Li J, et al. Evaluation of intergranular corrosion susceptibility of 11Cr ferritic stainless steel by DL-EPR method [J]. Acta Metall. Sin., 2015, 51: 1349
doi: 10.11900/0412.1961.2015.00117
[30] 强少明, 江来珠, 李 劲 等. 双环电化学动电位再活化法评价11Cr铁素体不锈钢晶间腐蚀敏感性 [J]. 金属学报, 2015, 51: 1349
[31] Bunchoo N, Wongpinkaew K, Kukiatkulchai E, et al. Effects of thermal history on sensitization behavior and Charpy impact property of type 316L and 316 stainless steels for applications in a fired heater [J]. Eng. Fail. Anal., 2022, 141: 106672
[1] 郭玉杰, 李艳辉, 夏大海, 胡文彬. 腐蚀电化学阻抗谱的数据解析与物理模型研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
[2] 夏大海, 潘成成, 郭玉杰, 胡文彬, TRIBOLLET Bernard. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
[3] 丁智超, 张树国, 肖晓春, 汪迪, 李文杰, 姜丽红. 半固态7075铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1089-1097.
[4] 雷涛, 陈绍高, 刘秀利, 范金龙, 郑兴文. 乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[5] 李丽, 李善文, 史洪微, 梁国平, 李春霖, 孙禹, 秦晋, 王伟, 韩恩厚. 高速列车用铝合金环氧底漆的腐蚀行为和湿热老化机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
[6] 张慧云, 郑留伟, 梁伟. 退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[7] 郭静波, 杨守华, 周子翼, 牟仁德, 谢云, 舒小勇, 戴建伟, 彭晓. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[8] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[9] 杜鑫, 杜乾, 苏钲雄, 郭少强, 王盛. 裂变产物碲致高镍合金GH3535晶间腐蚀研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1157-1163.
[10] 王天丛, 赵东杨, 向雪云, 吴航, 王文. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[11] 刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[12] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[13] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[14] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[15] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.