|
|
敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响 |
何武豪1, 刘阳2, 杨思懿2, 张韶栋3, 吴伟2,3,4( ), 张俊喜2 |
1 南昌工学院机械与车辆工程学院 南昌 330108 2 上海电力大学环境与化学工程学院 上海市电力材料防护与新材料重点实验室 上海 201306 3 江西恒大高新技术股份有限公司 南昌 330096 4 南昌大学物理与材料学院 南昌 330031 |
|
Effect of Sensitization Treatment on Electrochemical Behavior and Intergranular Corrosion of Conventional and Additively Manufactured 316L Stainless Steels |
HE Wuhao1, LIU Yang2, YANG Siyi2, ZHANG Shaodong3, WU Wei2,3,4( ), ZHANG Junxi2 |
1 School of Mechanical and Vehicle Engineering, Nanchang Institute of Science & Technology, Nanchang 330108, China 2 Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 201306, China 3 Jiangxi Hengda Hi-Tech Co., Ltd., Nanchang 330096, China 4 School of Physics and Materials, Nanchang University, Nanchang 330031, China |
引用本文:
何武豪, 刘阳, 杨思懿, 张韶栋, 吴伟, 张俊喜. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
Wuhao HE,
Yang LIU,
Siyi YANG,
Shaodong ZHANG,
Wei WU,
Junxi ZHANG.
Effect of Sensitization Treatment on Electrochemical Behavior and Intergranular Corrosion of Conventional and Additively Manufactured 316L Stainless Steels[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1331-1340.
[1] |
Liu W, Ren Z L, Wang G, et al. A-TIG weld shaping and joint mechanical properties of austenitic stainless steel [J]. Trans. China Weld. Inst., 2024, 45(10): 105
|
[1] |
刘 伟, 任泽良, 王 刚 等. 奥氏体不锈钢A-TIG焊缝成形及接头力学性能 [J]. 焊接学报, 2024, 45(10): 105
|
[2] |
Li M Y, Dong Z P, Kang D M, et al. Analysis of residual stress of austenitic stainless steel heat exchange tube expansion [J]. Petro-Chem. Equip., 2024, 53(5): 38
|
[2] |
李明远, 董中鹏, 康东明 等. 奥氏体不锈钢换热管胀接残余应力分析 [J]. 石油化工设备, 2024, 53(5): 38
|
[3] |
Sun X G, Han X H, Zhang X S, et al. Corrosion resistance and environmentally-friendly chemical passivation of welded joints for ultra-low carbon austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 345
|
[3] |
孙晓光, 韩晓辉, 张星爽 等. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究 [J]. 中国腐蚀与防护学报, 2019, 39: 345
doi: 10.11902/1005.4537.2019.054
|
[4] |
Geng Z Z, Zhang Y Z, Du X J, et al. Synergistic effect of S2- and Cl- on corrosion and passivation behavior of 316L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 797
|
[4] |
耿真真, 张钰柱, 杜小将 等. S2-和Cl-对316L奥氏体不锈钢的腐蚀钝化行为的协同作用 [J]. 中国腐蚀与防护学报, 2024, 44: 797
doi: 10.11902/1005.4537.2023.236
|
[5] |
Tao X, Qi J H, Rainforth M, et al. On the interstitial induced lattice inhomogeneities in nitrogen-expanded austenite [J]. Scrip. Mater., 2020, 185: 146
|
[6] |
Li C, Wang Q T, Yang C G, et al. Corrosion behavior of 904L super-austenitic stainless steel in simulated primary water in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 716
|
[6] |
李 禅, 王庆田, 杨承刚 等. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 716
|
[7] |
Liu J, Li X L, Zhu C W, et al. Prediction of critical pitting temperature of 316L stainless steel in gas field environments by artificial neutral network [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 205
|
[7] |
刘 静, 李晓禄, 朱崇伟 等. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度 [J]. 中国腐蚀与防护学报, 2016, 36: 205
|
[8] |
Gao J X, Cao H, Kuang W J, et al. Research progress on irradiation assisted stress corrosion cracking behavior and mechanism of austenitic steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 835
|
[8] |
高俊宣, 曹 晗, 匡文军 等. 奥氏体钢辐照促进应力腐蚀开裂行为机制的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 835
doi: 10.11902/1005.4537.2023.287
|
[9] |
Liang Z Y, Xu Y M, Wang S, et al. Corrosion behavior of heat-resistant alloys in high temperature CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 613
|
[9] |
梁志远, 徐一鸣, 王 硕 等. 高等级合金CO2环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 613
doi: 10.11902/1005.4537.2021.210
|
[10] |
Kolli S, Javaheri V, Ohligschläger T, et al. The importance of steel chemistry and thermal history on the sensitization behavior in austenitic stainless steels: Experimental and modeling assessment [J]. Mater. Today Commun., 2020, 24: 101088
|
[11] |
Qian J, Chen C F, Yu H B, et al. The influence and the mechanism of the precipitate/austenite interfacial C-enrichment on the intergranular corrosion sensitivity in 310 S stainless steel [J]. Corros. Sci., 2016, 111: 352
|
[12] |
Wang J X, Shi W, Xiang S, et al. Study of the corrosion behaviour of sensitized 904L austenitic stainless steel in Cl- solution [J]. Corros. Sci., 2021, 181: 109234
|
[13] |
Congleton J, Yang W. The effect of applied potential on the stress corrosion cracking of sensitized type 316 stainless steel in high temperature water [J]. Corros. Sci., 1995, 37: 429
|
[14] |
Abduluyahed A A, Rożniatowski K, Kurzydłowski K J. Free surface contribution to sensitization of an austenitic stainless steel [J]. J. Mater. Process. Technol., 2001, 109(1): 2
|
[15] |
Srinivasan N, Kain V, Birbilis N, et al. Near boundary gradient zone and sensitization control in austenitic stainless steel [J]. Corros. Sci., 2015, 100: 544
|
[16] |
Barla N A, Ghosh P K, Das S, et al. Simulated stress-induced sensitization study for the heat-affected zone of the 304LN stainless steel weld using a thermomechanical simulator [J]. Metall. Mater. Trans., 2019, 50A: 1283
|
[17] |
Lewis A C, Bingert J F, Rowenhorst D J, et al. Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel [J]. Mater. Sci. Eng., 2006, 418A: 11
|
[18] |
Peckner D, Bernstein I M. Handbook of Stainless Steels [M]. New York: McGraw-Hill Company, 1977
|
[19] |
Yao X Z, Li H J, Yang Z W, et al. Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition [J]. Trans. China Weld. Inst., 2024, 45(6): 12
|
[19] |
姚兴中, 李会军, 杨振文 等. 微量TiC粉末合金化改善电弧增材制造Ti-6Al-4V合金的组织和性能 [J]. 焊接学报, 2024, 45(6): 12
|
[20] |
Shang Q, Man C, Pang K, et al. Mechanism of post-heat treatment on intergranular corrosion behavior of SLM-316L stainless steel with different carbon contents [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1273
|
[20] |
商 强, 满 成, 逄 昆 等. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1273
|
[21] |
Duan Z W, Man C, Dong C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: pitting mechanism induced by gas pores [J]. Corros. Sci., 2020, 167: 108520
|
[22] |
Shi H C, Huang A M, Huang H, 30 Study on microstructure and fracture toughness of welded joint of CrMo/Q420qE high performance bridge steel [J]. Metal Mater. Metall. Eng., 2024, 52(6): 12
|
[22] |
石红昌, 黄安明, 黄 辉. 30CrMo/Q420qE桥梁钢焊接接头显微组织及断裂韧性研究 [J]. 金属材料与冶金工程, 2024, 52(6): 12
|
[23] |
Revilla R I, Van Calster M, Raes M, et al. Microstructure and corrosion behavior of 316L stainless steel prepared using different additive manufacturing methods: a comparative study bringing insights into the impact of microstructure on their passivity [J]. Corros. Sci., 2020, 176: 108914
|
[24] |
Kong D C. Cellular dislocation structure effects on the strength, toughness and corrosion resistance of selective laser melted 316L stainless steel [D]. Beijing: University of Science and Technology Beijing, 2022
|
[24] |
孔德成. 胞状位错结构对激光选区熔化316L不锈钢强韧性的影响与耐蚀机理研究 [D]. 北京: 北京科技大学, 2022
|
[25] |
Zhang X Q, Li Y P, Tang N, et al. Corrosion behaviour of CoCrMo alloys in 2wt% sulphuric acid solution [J]. Electrochim. Acta, 2014, 125: 543
|
[26] |
Liu G M, Liu Y Y, Cheng Y W, et al. The intergranular corrosion susceptibility of metastable austenitic Cr-Mn-Ni-N-Cu high-strength stainless steel under various heat treatments [J]. Materials, 2019, 12: 1385
|
[27] |
Dai H L, Zhang S Y, Li Y J, et al. Stress corrosion cracking behavior of 316 L manufactured by different additive manufacturing techniques in hydrofluoric acid vapor [J]. J. Mater. Sci. Technol., 2024, 191: 33
|
[28] |
Zhang T Y, Wu J S, Guo H L, et al. Influence of HSO 3 - on passive film composition and corrosion resistance of 2205 duplex stainless steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 535
|
[28] |
张天翼, 吴俊升, 郭海龙 等. 模拟海水中HSO 3 - 对2205双相不锈钢钝化膜成分及耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 535
doi: 10.11902/1005.4537.2016.190
|
[29] |
Chen Y, Chen X, Liu T, et al. Effect of potential on electrochemical corrosion behavior of 316L stainless steel in borate buffer solution [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 137
|
[29] |
陈 宇, 陈 旭, 刘 彤 等. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响 [J]. 中国腐蚀与防护学报, 2015, 35: 137
|
[30] |
Qiang S M, Jiang L Z, Li J, et al. Evaluation of intergranular corrosion susceptibility of 11Cr ferritic stainless steel by DL-EPR method [J]. Acta Metall. Sin., 2015, 51: 1349
doi: 10.11900/0412.1961.2015.00117
|
[30] |
强少明, 江来珠, 李 劲 等. 双环电化学动电位再活化法评价11Cr铁素体不锈钢晶间腐蚀敏感性 [J]. 金属学报, 2015, 51: 1349
|
[31] |
Bunchoo N, Wongpinkaew K, Kukiatkulchai E, et al. Effects of thermal history on sensitization behavior and Charpy impact property of type 316L and 316 stainless steels for applications in a fired heater [J]. Eng. Fail. Anal., 2022, 141: 106672
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|