|
|
FH40船用钢在模拟极地海水环境中的腐蚀与磨蚀行为 |
黄诗雨1, 刘士琛1, 杨淞普1, 刘家兵1, 李刚2, 郭娜1, 刘涛1( ) |
1 上海海事大学海洋科学与工程学院 上海 201306 2 中国航空综合技术研究所 北京 100028 |
|
Corrosion and Wear Corrosion Behavior of FH40 Marine Steel in Simulated Polar Seawater Environment |
HUANG Shiyu1, LIU Shichen1, YANG Songpu1, LIU Jiabing1, LI Gang2, GUO Na1, LIU Tao1( ) |
1 College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China 2 China Aero Poly-technology Establishment, Beijing 100028, China |
引用本文:
黄诗雨, 刘士琛, 杨淞普, 刘家兵, 李刚, 郭娜, 刘涛. FH40船用钢在模拟极地海水环境中的腐蚀与磨蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 859-868.
Shiyu HUANG,
Shichen LIU,
Songpu YANG,
Jiabing LIU,
Gang LI,
Na GUO,
Tao LIU.
Corrosion and Wear Corrosion Behavior of FH40 Marine Steel in Simulated Polar Seawater Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 859-868.
[1] |
Wu G, Zhou J H, Shen Y, et al. Exploration and technical requirements for the development of China's polar marine equipment [J]. Ship Boat, 2024, 4: 1
|
[1] |
(吴 刚, 周豪杰, 沈 悦 等. 中国极地海洋装备的发展探索与技术需求 [J]. 船舶, 2024, 4: 1)
|
[2] |
Shi G J, Gao D W. China's polar shipping capacity and suggestions for development [J]. Chin. J. Polar Res., 2018, 30: 429
|
[2] |
(师桂杰, 高大威. 我国极地船舶能力分析与发展建议 [J]. 极地研究, 2018, 30: 429)
|
[3] |
Qiao K Q, Liu Z J, Sun Z Y, et al. Effects of low temperature overload and cycling temperature on fatigue crack growth behavior of ship steels in Arctic environments [J]. Ocean Eng., 2023, 288: 116090
|
[4] |
Xia Q Q, Zhu T, Deng L J. Applicability analysis of standards for polar navigation ships and work suggestions [J]. Ship Eng., 2022, 44(7): 146
|
[4] |
(夏齐强, 朱 韬, 邓丽娟. 极地航行船舶标准适用性分析及工作建议 [J]. 船舶工程, 2022, 44(7): 146)
|
[5] |
Li C H, Peng C, Li X H, et al. Initial corrosion behavior of EH36 marine steel in simulated polar marine environment [J]. Int. J. Electrochem. Sci., 2022, 17: 22126
|
[6] |
Gao Z P, Gong X X, Niu J J, et al. The analysis of 390 MPa clad steel plate adaptability to polar low-temperature environment [J]. Surf. Technol., 2022, 51(6): 67
|
[6] |
(高珍鹏, 宫旭辉, 牛佳佳 等. 390 MPa级复合钢板极地低温环境适应性分析 [J]. 表面技术, 2022, 51(6): 67)
|
[7] |
Chernov B B, Ponomarenko S A. Physicochemical modelling of metal corrosion in seawater [J]. Prot. Metals, 1991, 27: 612
|
[8] |
Chen S Q, Hou R Z, Zhang X, et al. The study of riboflavin-mediated indirect electron transfer process in corrosion of EH40 steel induced by Methanococcus maripaludis [J]. Corros. Sci., 2023, 225: 111567
|
[9] |
Lu S H, Zhang L Q, Xue N T, et al. Riboflavin-mediated Fe0-to-microbe electron transfer corrosion of EH40 steel by Halomonas titanicae [J]. Corros. Sci., 2024, 231: 111981
|
[10] |
Wang H L, Yan F Y. Study on tribological behavior of 1.08%C steel under dry friction at low temperature [J]. Tribology, 2008, 28: 469
|
[10] |
(王鸿灵, 阎逢元. 一种高碳钢低温干摩擦行为的研究 [J]. 摩擦学学报, 2008, 28: 469)
|
[11] |
Sun S B, Zhao Z M, Gao Z P, et al. Friction-corrosion performance of steels and their welding zone for composite plate of 317L stainless steel/FH40 low-temperature marine steel in simulated sea waters at different temperatures [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 69
|
[11] |
(孙士斌, 赵子铭, 高珍鹏 等. 317L/FH40复合板在不同温度下摩擦-腐蚀耦合作用机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 69)
doi: 10.11902/1005.4537.2022.013
|
[12] |
Wang C Y, Xia C X, Wang D S, et al. Effect of surface oxides on wear resistance of new F-class marine low temperature steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 395
|
[12] |
(王超逸, 夏呈祥, 王东胜 等. 新型F级船用低温钢表面氧化物对其耐磨性能影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 395)
doi: 10.11902/1005.4537.2021.254
|
[13] |
Mao X M, Liu T, Guo N, et al. Corrosion behavior of marine low alloy steel under the condition of multi-factor coupling in simulated Arctic route [J]. Surf. Technol., 2022, 51(6): 36
|
[13] |
(毛晓敏, 刘 涛, 郭 娜 等. 模拟北极航线多因素耦合条件下船用低合金钢的腐蚀行为 [J]. 表面技术, 2022, 51(6): 36)
|
[14] |
Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
|
[15] |
Wang Z W, Yan Y, Su Y J, et al. Effect of proteins on the surface microstructure evolution of a CoCrMo alloy in bio-tribocorrosion processes [J]. Colloids Surf., 2016, 145B: 176
|
[16] |
Tang Y H, Ji P F, Li B, et al. Tribology, corrosion, and tribocorrosion performance of aged lightweight steels: effects of oxide film and carbide [J]. Corros. Sci., 2024, 231: 111999
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|