Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 859-868     CSTR: 32134.14.1005.4537.2024.234      DOI: 10.11902/1005.4537.2024.234
  研究报告 本期目录 | 过刊浏览 |
FH40船用钢在模拟极地海水环境中的腐蚀与磨蚀行为
黄诗雨1, 刘士琛1, 杨淞普1, 刘家兵1, 李刚2, 郭娜1, 刘涛1()
1 上海海事大学海洋科学与工程学院 上海 201306
2 中国航空综合技术研究所 北京 100028
Corrosion and Wear Corrosion Behavior of FH40 Marine Steel in Simulated Polar Seawater Environment
HUANG Shiyu1, LIU Shichen1, YANG Songpu1, LIU Jiabing1, LI Gang2, GUO Na1, LIU Tao1()
1 College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
2 China Aero Poly-technology Establishment, Beijing 100028, China
引用本文:

黄诗雨, 刘士琛, 杨淞普, 刘家兵, 李刚, 郭娜, 刘涛. FH40船用钢在模拟极地海水环境中的腐蚀与磨蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 859-868.
Shiyu HUANG, Shichen LIU, Songpu YANG, Jiabing LIU, Gang LI, Na GUO, Tao LIU. Corrosion and Wear Corrosion Behavior of FH40 Marine Steel in Simulated Polar Seawater Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 859-868.

全文: PDF(26797 KB)   HTML
摘要: 

为了研究船用钢在极地海冰水-微生物-低温复杂环境中的服役行为,利用模拟海水和含嗜冷杆菌的2216E液体培养基按比例混合以模拟极地海水溶液,通过浸泡实验和电化学测试评估F级船用钢的低温腐蚀行为,并模拟测试其耐极地冰水磨蚀性能。结果表明:FH40钢微观结构主要由铁素体和少量珠光体组成,存在少量含Al、Ti、Si的常见夹杂物。钢材在模拟极地海水中的腐蚀速率为(0.238 ± 0.005) mm/a,腐蚀产物由γ-FeOOH、α-FeOOH、Fe2O3/Fe3O4和嗜冷杆菌微生物被膜组成,疏松多孔的腐蚀产物膜和极地微生物的局部覆盖协同诱导点蚀的形成。钢材在模拟极地海水环境中的摩擦系数为0.41,单位历程磨损失重率为4.1 × 10-5 g/(N·m·s),磨损体积为0.019 mm3,电化学腐蚀磨损机理为机械去除和腐蚀去除混合模型。另外,摩擦将加剧船用钢的局部腐蚀并降低锈层的腐蚀保护性,而磨损试样继续腐蚀则能缓解磨痕区域的点蚀现象并降低磨痕宽度。

关键词 极地船用钢极地微生物微生物腐蚀腐蚀产物磨损腐蚀    
Abstract

In order to clarify the performance of marine steel in real service conditions of polar ice seawater with microorganisms at low temperature, herein, the corrosion and wear corrosion behavior of a F-class marine steel FH40 at low temperatures in simulated polar seawater solution, which is a mixture of artificial seawater with Psychrophilic cibarius containing 2216E culture medium was studied via immersion test, electrochemical measurement and reciprocating friction and wear test. The results showed that FH40 steel consisted primarily of ferrite and a small amount of pearlite, with minor common inclusions containing Al, Ti, and Si. The corrosion rate of the steel in the simulated polar seawater was (0.238 ± 0.005) mm/a. Corrosion products composed of γ-FeOOH, α-FeOOH, Fe2O3/Fe3O4, and a microbial biofilm of Psychrophilic cibarius. These loose and porous corrosion product film, along with localized coverage of polar microorganisms, synergistically induced the formation of pits. The friction coefficient of steel in simulated polar seawater was 0.41 with a specific wear rate of 4.1 × 10-5 g/(N·m·s) and a wear volume of 0.019 mm3. The mechanism related with the wear-corrosion was identified as a hybrid model involving mechanical removal and corrosion removal. In addition, friction exacerbated localized corrosion and compromised the corrosion protection of the rust layer, while the post continued corrosion of the worn steels helped alleviate pitting corrosion in the wear scar area and reduced the width of the wear scar.

Key wordspolar ship steel    polar microorganism    microbiological influenced corrosion    corrosion products    wear corrosion
收稿日期: 2024-07-30      32134.14.1005.4537.2024.234
ZTFLH:  TG172  
基金资助:中国博士后科学基金(2023M742213);博士后研究人员计划C档(GZC20231538);国防科工局技术基础项目(JSHS2022206A001)
通讯作者: 刘涛,E-mail:liutao@shmtu.edu.cn,研究方向为极地船舶材料腐蚀与防护
Corresponding author: LIU Tao, E-mail: liutao@shmtu.edu.cn
作者简介: 黄诗雨,女,1996年生,博士,副教授
图1  FH40钢的微观结构及EDS结果
NumberOriginal mass / gMass after product removal / gMass loss / gCorrosion rate / mm·a-1
12.043591.994000.049590.240
22.043951.993870.050080.243
31.994081.946210.047870.232
表1  FH40钢在4 ℃模拟极地海水中浸泡30 d后质量损失与腐蚀速率
图2  FH40钢在4 ℃模拟极地海水中浸泡30 d后的宏观形貌图
图3  FH40钢在4 ℃模拟极地海水中浸泡30 d后表面和截面微观形貌图
图4  FH40钢在4 ℃模拟极地海水中浸泡30 d后表面腐蚀产物的XRD图谱
图5  FH40钢去除在4 ℃模拟极地海水中浸泡30 d形成的腐蚀产物后的光学轮廓图
图6  FH40钢在4 ℃模拟极地海水环境中浸泡0和7 d的电化学结果
SampleRs / Ω·cm2CPEf / Ω·cm-2·s-n1n1Rf / Ω·cm2CPEdl / Ω·cm-2·s-n2n2Rct / Ω·cm2χ2
0 d R(QR)7.95.7 × 10-40.761670.04.8 × 10-4
7 d R(QR)(QR)12.113.6 × 10-30.80431.92.1 × 10-30.67211.31.7 × 10-4
表2  FH40钢在4 ℃模拟极地海水环境中浸泡0和7 d后EIS的拟合结果
图7  FH40钢在模拟极地海水环境中的摩擦系数随时间变化关系
NumberOriginal mass / gMass after product removal / gMass loss / gWear rate per unit distance / g·N-1·m-1·s-1
12.116912.110580.006332.8 × 10-5
22.052502.039820.012685.7 × 10-5
32.104352.095840.008513.8 × 10-5
表3  FH40钢在模拟极地海水环境中摩擦的质量损失及单位历程磨损失重率
图8  FH40钢在模拟极地海水环境中摩擦后表面形貌
图9  FH40钢在模拟极地海水环境中摩擦实验并去除腐蚀产物后的磨痕三维轮廓
图10  FH40钢在模拟极地海水环境中进行摩擦实验并去除表面腐蚀产物后的磨痕形貌
图11  磨损试样在模拟极地海水环境中浸泡30 d后的表面形貌
图12  磨损试样在模拟极地海水环境中浸泡30 d后去除腐蚀产物的三维轮廓
图13  磨损试样浸泡30 d并去除腐蚀产物后的表面形貌
[1] Wu G, Zhou J H, Shen Y, et al. Exploration and technical requirements for the development of China's polar marine equipment [J]. Ship Boat, 2024, 4: 1
[1] (吴 刚, 周豪杰, 沈 悦 等. 中国极地海洋装备的发展探索与技术需求 [J]. 船舶, 2024, 4: 1)
[2] Shi G J, Gao D W. China's polar shipping capacity and suggestions for development [J]. Chin. J. Polar Res., 2018, 30: 429
[2] (师桂杰, 高大威. 我国极地船舶能力分析与发展建议 [J]. 极地研究, 2018, 30: 429)
[3] Qiao K Q, Liu Z J, Sun Z Y, et al. Effects of low temperature overload and cycling temperature on fatigue crack growth behavior of ship steels in Arctic environments [J]. Ocean Eng., 2023, 288: 116090
[4] Xia Q Q, Zhu T, Deng L J. Applicability analysis of standards for polar navigation ships and work suggestions [J]. Ship Eng., 2022, 44(7): 146
[4] (夏齐强, 朱 韬, 邓丽娟. 极地航行船舶标准适用性分析及工作建议 [J]. 船舶工程, 2022, 44(7): 146)
[5] Li C H, Peng C, Li X H, et al. Initial corrosion behavior of EH36 marine steel in simulated polar marine environment [J]. Int. J. Electrochem. Sci., 2022, 17: 22126
[6] Gao Z P, Gong X X, Niu J J, et al. The analysis of 390 MPa clad steel plate adaptability to polar low-temperature environment [J]. Surf. Technol., 2022, 51(6): 67
[6] (高珍鹏, 宫旭辉, 牛佳佳 等. 390 MPa级复合钢板极地低温环境适应性分析 [J]. 表面技术, 2022, 51(6): 67)
[7] Chernov B B, Ponomarenko S A. Physicochemical modelling of metal corrosion in seawater [J]. Prot. Metals, 1991, 27: 612
[8] Chen S Q, Hou R Z, Zhang X, et al. The study of riboflavin-mediated indirect electron transfer process in corrosion of EH40 steel induced by Methanococcus maripaludis [J]. Corros. Sci., 2023, 225: 111567
[9] Lu S H, Zhang L Q, Xue N T, et al. Riboflavin-mediated Fe0-to-microbe electron transfer corrosion of EH40 steel by Halomonas titanicae [J]. Corros. Sci., 2024, 231: 111981
[10] Wang H L, Yan F Y. Study on tribological behavior of 1.08%C steel under dry friction at low temperature [J]. Tribology, 2008, 28: 469
[10] (王鸿灵, 阎逢元. 一种高碳钢低温干摩擦行为的研究 [J]. 摩擦学学报, 2008, 28: 469)
[11] Sun S B, Zhao Z M, Gao Z P, et al. Friction-corrosion performance of steels and their welding zone for composite plate of 317L stainless steel/FH40 low-temperature marine steel in simulated sea waters at different temperatures [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 69
[11] (孙士斌, 赵子铭, 高珍鹏 等. 317L/FH40复合板在不同温度下摩擦-腐蚀耦合作用机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 69)
doi: 10.11902/1005.4537.2022.013
[12] Wang C Y, Xia C X, Wang D S, et al. Effect of surface oxides on wear resistance of new F-class marine low temperature steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 395
[12] (王超逸, 夏呈祥, 王东胜 等. 新型F级船用低温钢表面氧化物对其耐磨性能影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 395)
doi: 10.11902/1005.4537.2021.254
[13] Mao X M, Liu T, Guo N, et al. Corrosion behavior of marine low alloy steel under the condition of multi-factor coupling in simulated Arctic route [J]. Surf. Technol., 2022, 51(6): 36
[13] (毛晓敏, 刘 涛, 郭 娜 等. 模拟北极航线多因素耦合条件下船用低合金钢的腐蚀行为 [J]. 表面技术, 2022, 51(6): 36)
[14] Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
[15] Wang Z W, Yan Y, Su Y J, et al. Effect of proteins on the surface microstructure evolution of a CoCrMo alloy in bio-tribocorrosion processes [J]. Colloids Surf., 2016, 145B: 176
[16] Tang Y H, Ji P F, Li B, et al. Tribology, corrosion, and tribocorrosion performance of aged lightweight steels: effects of oxide film and carbide [J]. Corros. Sci., 2024, 231: 111999
[1] 张维智, 冯思乔, 宋霄鹏, 刘艾华, 唐德志, 闫茂成, 韩恩厚. 聚合物驱集输管道微生物腐蚀行为实验研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1098-1106.
[2] 戚鹏, 王鹏, 曾艳, 张盾. 微生物腐蚀的检测方法和预测模型[J]. 中国腐蚀与防护学报, 2025, 45(3): 602-610.
[3] 彭文山, 辛永磊, 温杰平, 侯健, 孙明先. 极地冰覆盖下变温和恒温对高强钢腐蚀影响研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 821-826.
[4] 张超, 陈俊航, 邹士文, 张欢, 李曌亮, 肖葵. Mg-Gd-Y-Zr合金在模拟沿海贮存环境下的腐蚀行为与机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 731-738.
[5] 白钲清, 农靖, 韦世宸, 徐健. 预充氢对Ni-Cr合金在高温高压水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
[6] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[7] 姜慧芳, 刘扬豪, 刘莹, 李迎超, 于浩波, 赵博, 陈曦. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[8] 杨震宇, 基超, 郭丽雅, 徐闰, 彭伟, 赵洪山, 韦习成, 董瀚. 6种典型商用纯铁和钢材在3.5%NaCl溶液中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[9] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[10] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[11] 赵连红, 王英芹, 刘元海, 何卫平, 王浩伟. 四种飞机起落架用钢在模拟海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1263-1273.
[12] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[13] 杜广, 芦国强, 邓龙辉, 蒋佳宁, 曹学强. 铝含量对镍铝合金在稀硫酸溶液中的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.
[14] 张运军, 蒋有伟, 张忠义, 吕乃欣, 陈君伟, 连国锋. 3Cr合金钢在尿素辅助稠油蒸汽吞吐环境中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(2): 480-488.
[15] 柯楠, 倪莹莹, 何嘉淇, 柳海宪, 金正宇, 刘宏伟. 微生物胞外聚合物引起的金属腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.