|
|
42CrMo钢表面激光熔覆涂层的研究现状及进展 |
孙方红1, 任延杰2( ), 宋文卿3 |
1 浙江科技大学创新创业学院 杭州 310023 2 浙江科技大学机械与能源工程学院 杭州 310023 3 惠雨恩科技(深圳)有限公司 深圳 518132 |
|
Research Status and Progress of Laser Clad Coatings on 42CrMo Steel |
SUN Fanghong1, REN Yanjie2( ), SONG Wenqing3 |
1 College of Innovation and Entrepreneurship, Zhejiang University of Science and Technology, Hangzhou 310023, China 2 School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China 3 Huiyun Technology (Shenzhen) Co., Ltd., Shenzhen 518132, China |
引用本文:
孙方红, 任延杰, 宋文卿. 42CrMo钢表面激光熔覆涂层的研究现状及进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 849-858.
Fanghong SUN,
Yanjie REN,
Wenqing SONG.
Research Status and Progress of Laser Clad Coatings on 42CrMo Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 849-858.
[1] |
Lu H F, Pan C Y, Qin E W, et al. Microstructure and properties of laser clad WC/Ni-based alloy composite coating on 45 steel surface [J]. Heat Treat. Met., 2019, 44(12): 19
|
[1] |
(陆海峰, 潘晨阳, 覃恩伟 等. 45钢表面激光熔覆WC/Ni基合金复合覆层的组织和性能 [J]. 金属热处理, 2019, 44(12): 19)
|
[2] |
Ding Q Q, Yin M, Ni Y J, et al. Research on roughness and microhardness of laser cladding coating on the inner wall of 42CrMo steel [J]. Appl. Laser, 2022, 42(4): 41
|
[2] |
(丁倩倩, 殷 铭, 倪玉吉 等. 42CrMo钢管内壁激光熔覆层粗糙度及显微硬度研究 [J]. 应用激光, 2022, 42(4): 41)
|
[3] |
Zhang Z D, Wang D, Liu G L, et al. Surface modification of 42CrMo steels: a review from wear and corrosion resistance [J]. Coatings, 2024, 14: 337
|
[4] |
Xu H H. Study on the microstructure and properties of laser cladding Ni-based WC + CeO2 coatings on the surface of 42CrMo steel [D]. Qingdao: Qingdao University of Technology, 2021
|
[4] |
(徐欢欢. 42CrMo钢表面激光熔覆Ni基WC + CeO2涂层组织与性能的研究 [D]. 青岛: 青岛理工大学, 2021)
|
[5] |
Wu D L, Wu H T, Sun H, et al. Research status and development of laser cladding high temperature protective coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 725
|
[5] |
(吴多利, 吴昊天, 孙 珲 等. 激光熔覆高温防护涂层研究现状及发展方向 [J]. 中国腐蚀与防护学报, 2023, 43: 725)
doi: 10.11902/1005.4537.2023.160
|
[6] |
Pei S B, Wan D Y, Zhou P, et al. Research progress on preparation, microstructure, oxidation-and corrosion-resistance of high-entropy alloy coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 873
|
[6] |
(裴书博, 万冬阳, 周 萍 等. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 873)
doi: 10.11902/1005.4537.2021.249
|
[7] |
Liu H Q, Zhou W. Research progress of laser cladding materials [J]. Mod. Manuf. Technol. Equip., 2017, 53(11): 83
|
[7] |
(刘海青, 周 伟. 激光熔覆材料的研究进展 [J]. 现代制造技术与装备, 2017, 53(11): 83)
|
[8] |
Zhu L N, Xu B S, Wang H D, et al. Microstructure and nanoindentation measurement of residual stress in Fe-based coating by laser cladding [J]. J. Mater. Sci., 2012, 47: 2122
|
[9] |
Zhao J, Gao Q W, Wang H Q, et al. Microstructure and mechanical properties of Co-based alloy coatings fabricated by laser cladding and plasma arc spray welding [J]. J. Alloy. Compd., 2019, 785: 846
|
[10] |
Lyu Y Z, Sun Y F, Yang Y. Non-vacuum sintering process of WC/W2C reinforced Ni-based coating on steel [J]. Met. Mater. Int., 2016, 22: 311
|
[11] |
Liu S S, Chen H Y, Zhao X, et al. Corrosion behavior of Ni-based coating containing spherical tungsten carbides in hydrochloric acid solution [J]. J. Iron Steel Res. Int., 2019, 26: 191
|
[12] |
Wan L, Cheng M Y, Fu G Y, et al. Annular laser cladding of CuPb10Sn10 copper alloy for high-quality anti-friction coating on 42CrMo steel surface [J]. Opt. Laser Technol., 2023, 158: 108878
|
[13] |
Cheng M Y, Shi T, Wan L, et al. Performance regulation of annular laser cladding CuPb10Sn10 anti-friction coating microstructure [J]. Surf. Technol., 2023, 52(7): 336
|
[13] |
(程梦颖, 石 拓, 万 乐 等. 环形束激光熔覆CuPb10Sn10减摩涂层组织性能调控 [J]. 表面技术, 2023, 52(7): 336)
|
[14] |
Luo L B. Microstructure and properties of wear resistant layer for 42CrMo steel pick with the laser cladding [D]. Taiyuan: Taiyuan University of Technology, 2023
|
[14] |
(罗亮斌. 42CrMo钢截齿激光熔覆耐磨层组织及性能 [D]. 太原: 太原理工大学, 2023)
|
[15] |
Tan D Q, Yang X Q, He Q, et al. Impact-sliding wear properties of PVD CrN and WC/C coatings [J]. Surf. Eng., 2021, 37: 12
|
[16] |
Kuang S H, Zhou F, Liu W C, et al. Al2O3/MC particles reinforced MoFeCrTiWNb x high-entropy-alloy coatings prepared by laser cladding [J]. Surf. Eng., 2022, 38: 158
|
[17] |
Yuan S H, Li H L, Han C F, et al. FeCoNiCrAl0.6 high-entropy alloy coating on Q235 steel fabricated by laser cladding [J]. Mater. Sci. Technol., 2023, 39: 705
|
[18] |
Gong J T, Shu L S, Wang J S, et al. Research status and development trend of laser cladding process optimization method [J]. Laser Optoelectron. Prog., 2023, 60: 1900003
|
[18] |
(巩江涛, 舒林森, 王家胜 等. 激光熔覆工艺优化方法研究现状及发展趋势 [J]. 激光与光电子学进展, 2023, 60: 1900003)
|
[19] |
Fu D M, Wang K M. Influence of scanning speed on forming of NiCrBSi composite coating on 42CrMo steel by laser cladding [J]. Mech. Engineer, 2017, (8): 97
|
[19] |
(符定梅, 王开明. 扫描速度对42CrMo表面激光熔覆NiCrBSi熔覆层成形的影响 [J]. 机械工程师, 2017, (8): 97)
|
[20] |
Lu Q L, Wang J, Qi X X, et al. Preparation technology of laser clad Fe-based coating for shield sealing runway repair [J]. Heat Treat. Met., 2022, 47(1): 202
|
[20] |
(卢庆亮, 王 静, 戚小霞 等. 面向盾构机密封跑道修复的激光熔覆Fe基涂层制备工艺 [J]. 金属热处理, 2022, 47(1): 202)
doi: 10.13251/j.issn.0254-6051.2022.01.034
|
[21] |
Cui C, Wu M P, Cheng W. Effect of laser power on corrosion resistance of 42CrMo cladding Stellite-6 coating [J]. Laser Optoelectron. Prog., 2019, 56: 241403
|
[21] |
(崔 宸, 武美萍, 程 伟. 激光功率对42CrMo熔覆Stellite-6涂层耐腐蚀性能的影响 [J]. 激光与光电子学进展, 2019, 56: 241403)
|
[22] |
Xiao Z L, Li X F, He T Y, et al. Research and analysis on microstructure and properties of wear-resistant layer of laser cladding high-end pick [J]. Hot Work. Technol., 2025, 54(6): 99
|
[22] |
(肖志玲, 李晓峰, 何天运 等. 激光熔覆高端截齿耐磨层组织和性能研究分析 [J]. 热加工工艺, 2025, 54(6): 99)
|
[23] |
Zhou Z J, Jiang F L, Yang F Z, et al. Eutectic behavior and wear and corrosion resistance mechanisms of FeCoNiCrNb0.5Mo0.25 high-entropy alloy laser cladding layer microstructure [J]. Chin. J. Lasers, 2023, 50: 0402011
|
[23] |
(周子钧, 姜芙林, 杨发展 等. FeCoNiCrNb0.5Mo0.25高熵合金激光熔覆层组织的共晶化行为及耐磨耐蚀机理 [J]. 中国激光, 2023, 50: 0402011)
|
[24] |
Cui C. Study on the optimization of laser cladding technology for cobalt-based coatings on 42CrMo steel surface [D]. Wuxi: Jiangnan University, 2021
|
[24] |
(崔 宸. 42CrMo钢表面激光熔覆制备钴基涂层的工艺优化研究 [D]. 无锡: 江南大学, 2021)
|
[25] |
Zhang H Q, Liu H, Liu Y, et al. Research status and analysis of Co-based composite coatings prepared by laser cladding [J]. Laser Optoelectron. Prog., 2023, 60: 0900004
|
[25] |
(张好强, 刘 豪, 刘 印 等. 激光熔覆制备钴基复合涂层研究现状分析 [J]. 激光与光电子学进展, 2023, 60: 0900004)
|
[26] |
Wen J H, Ding Y C, Yang Z G, et al. Research status and prospect of laser surface modification technology [J]. MW Met. Form., 2022, (11): 10
|
[26] |
(温家浩, 丁永春, 杨中桂 等. 激光表面改性技术研究现状与展望 [J]. 金属加工(热加工), 2022, (11): 10)
|
[27] |
Ding T, Zhang Y H, Li J J, et al. Research status and prospect of laser cladding technology on stainless steel surface [J]. Heat Treat. Met., 2022, 47(2): 205
doi: 10.13251/j.issn.0254-6051.2022.02.037
|
[27] |
(丁 涛, 张云华, 李俊杰 等. 不锈钢表面激光熔覆技术研究现状与展望 [J]. 金属热处理, 2022, 47(2): 205)
|
[28] |
Farshidianfar M H, Khajepour A, Gerlich A. Real-time control of microstructure in laser additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2016, 82: 1173
|
[29] |
Marzban J, Ghaseminejad P, Ahmadzadeh M H, et al. Experimental investigation and statistical optimization of laser surface cladding parameters [J]. Int. J. Adv. Manuf. Technol., 2015, 76: 1163
|
[30] |
Hu G F, Yang Y, Qi K, et al. Investigation of the microstructure and properties of NiCrBSi coating obtained by laser cladding with different process parameters [J]. Trans. Indian Inst. Met., 2020, 73: 2623
|
[31] |
Liu J W. Laser melting of WC particle-reinforced cobalt-based alloy gradient coatings on 42CrMo steel [D]. Taiyuan: Taiyuan University of Technology, 2023
|
[31] |
(刘家伟. 42CrMo钢激光熔覆WC颗粒增强钴基合金梯度涂层的研究 [D]. 太原: 太原理工大学, 2023)
|
[32] |
Jiang F, Yan L, Huang Y, et al. Review on magnetic field assisted machining technology [J]. J. Mech. Eng., 2016, 52(17): 1
doi: 10.3901/JME.2016.17.001
|
[32] |
(姜 峰, 言 兰, 黄 阳 等. 磁场辅助加工的研究现状及其发展趋势 [J]. 机械工程学报, 2016, 52(17): 1)
|
[33] |
Gong J T, Shu L S, Wang J S, et al. Research status and development trend of laser cladding process optimization method [J]. Laser Optoelectron. Prog., 2023, 60: 1900003
|
[33] |
(巩江涛, 舒林森, 王家胜 等. 激光熔覆工艺优化方法研究现状及发展趋势 [J]. 激光与光电子学进展, 2023, 60: 1900003)
|
[34] |
Qi K, Yang Y, Sun R, et al. Effect of magnetic field on tribological properties of Co-based alloy layer produced by laser cladding on 42CrMo [J]. Mater. Lett., 2021, 282: 128893
|
[35] |
Qi K, Yang Y, Liang W X, et al. Influence of the anomalous elastic modulus on the crack sensitivity and wear properties of laser cladding under the effects of a magnetic field and Cr addition [J]. Surf. Coat. Technol., 2021, 423: 127575
|
[36] |
Qi K, Yang Y, Sun R, et al. Effect of magnetic field on crack control of Co-based alloy laser cladding [J]. Opt. Laser Technol., 2021, 141: 107129
|
[37] |
Ju J, Zhou Y, Kang M D, et al. Optimization of process parameters, microstructure, and properties of laser cladding Fe-based alloy on 42CrMo steel roller [J]. Materials, 2018, 11: 2061
|
[38] |
Cai Z H, Qin H, Liu J, et al. Research of microstructure and performance of laser cladding Fe-based medium manganese alloy [J]. Appl. Laser, 2018, 38: 726
|
[38] |
(蔡志海, 秦 航, 柳 建 等. 中锰铁基合金激光熔覆层组织性能研究 [J]. 应用激光, 2018, 38: 726)
|
[39] |
Yang Z F, Zou Y, Shi S Q, et al. Optimization of SD-3 nickel‑based alloy coating by single channel laser cladding using orthogonal experimental method [J]. Trans. Indian Inst. Met., 2024, 77: 1509
|
[40] |
Zhang Z J, Li X M, Zhu C J, et al. Effect of B4C addition on morphology and properties of Stellite6 + B4C laser clad layers on 42CrMo steel surface [J]. Heat Treat. Met., 2024, 49(7): 200
|
[40] |
(张泽疆, 李新梅, 朱春金 等. B4C添加量对42CrMo钢表面Stellite6 + B4C激光熔覆层形貌与性能的影响 [J]. 金属热处理, 2024, 49(7): 200)
|
[41] |
Yang K X, Sun W L, Xiao Q, et al. Study on hardness and wear resistance of laser cladding Fe06 + (TiC/Mo) composite coatings [J]. Laser Technol., 2023, 47: 393
|
[41] |
(杨凯欣, 孙文磊, 肖 奇 等. 激光熔覆Fe06 + (TiC/Mo)复合涂层硬度及耐磨性能研究 [J]. 激光技术, 2023, 47: 393)
|
[42] |
Zhang X H, Chen C L, Li Y T, et al. Research on microstructure and properties of laser cladding stainless steel powders doped Ni-WC coatings on 42CrMo steel [J]. Hot Work. Technol., 2021, 50(16): 66
|
[42] |
(张现虎, 陈成龙, 李远田 等. 42CrMo钢激光熔覆不锈钢粉掺杂Ni-WC涂层的组织及性能研究 [J]. 热加工工艺, 2021, 50(16): 66)
|
[43] |
Gu J, Li D Q, Wang K M. Study on microstructure and properties of laser coated Ni-based composite coating on 42CrMo steel [J]. Hot Work. Technol., 2019, 48(24): 111
|
[43] |
(顾 建, 李冬青, 王开明. 42CrMo钢表面激光熔覆镍基复合熔覆层组织和性能的研究 [J]. 热加工工艺, 2019, 48(24): 111)
|
[44] |
Wang D S, Tian Z J. Microstructure and wear resistance of NiCrBSi/WC-Co composite coating by laser cladding [J]. Mater. Mech. Eng., 2019, 43(11): 16
doi: 10.11973/jxgccl201911005
|
[44] |
(王东生, 田宗军. 激光熔覆NiCrBSi/WC-Co复合涂层的组织与耐磨性能 [J]. 机械工程材料, 2019, 43(11): 16)
doi: 10.11973/jxgccl201911005
|
[45] |
Xu H, Lu Y P, Zhang H, et al. Laser cladding in-situ nano-submicron TiC reinforced ultrafinegrained Fe-based composite layers on 42CrMo steel [J]. Int. J. Electrochem. Sci., 2019, 14: 9974
|
[46] |
Yu W K. Study on preparation and properties of laser cladding CoCrFeNi-X high entropy alloy coatings [D]. Wuhan: Huazhong University of Science and Technology, 2021
|
[46] |
(余文康. 激光熔覆CoCrFeNi-X高熵合金涂层的制备与性能研究 [D]. 武汉: 华中科技大学, 2021)
|
[47] |
Niu H Y, Wang K M, Ma P F, et al. Investigation on the microstructure and wear resistance of laser coated Fe-based coating [J]. Appl. Laser, 2023, 43(12): 21
|
[47] |
(牛海云, 王开明, 马鹏飞 等. 激光熔覆铁基涂层显微组织和摩擦磨损性能的研究 [J]. 应用激光, 2023, 43(12): 21)
|
[48] |
Han J T, Wu M P, Cui C. Effect of laser power on microstructure and friction and wear properties of laser clad layer on 42CrMo steel [J]. Heat Treat. Met., 2020, 45(11): 214
doi: 10.13251/j.issn.0254-6051.2020.11.041
|
[48] |
(韩基泰, 武美萍, 崔 宸. 激光功率对42CrMo钢激光熔覆层组织和摩擦磨损性能的影响 [J]. 金属热处理, 2020, 45(11): 214)
doi: 10.13251/j.issn.0254-6051.2020.11.041
|
[49] |
Cui C, Wu M P, He R, et al. Effect of CeO2 addition on grain refinement and mechanical properties of Stellite-6 coating fabricated by laser cladding [J]. J. Therm. Spray Technol., 2022, 31: 2621
|
[50] |
Guo H R. Research on microstructure and properties of laser cladded high-WC content composite coatings on 42CrMo steel [D]. Harbin: Harbin Institute of Technology, 2023
|
[50] |
(郭浩然. 42CrMo钢激光熔覆高WC含量复合涂层组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2023)
|
[51] |
Lin L L, Chen X, Du K P, et al. High temperature wear properties of laser cladding AlCoCrFeNi high entropy alloy coatings [J]. Therm. Spray Technol., 2024, 16(2): 81
|
[51] |
(林丽丽, 陈 星, 杜开平 等. 激光熔覆AlCoCrFeNi高熵合金涂层的高温磨损性能 [J]. 热喷涂技术, 2024, 16(2): 81)
|
[52] |
Liu J S, Shi Y. Microstructure and wear behavior of laser-cladded Ni-based coatings decorated by graphite particles [J]. Surf. Coat. Technol., 2021, 412: 127044
|
[53] |
Liu X Y, Guo Z F, Lu Z W, et al. Tribological behavior of the wear-resistant and self-lubrication integrated interface structure with ordered micro-pits [J]. Surf. Coat. Technol., 2023, 454: 129159
|
[54] |
Xiao J P, Yang X F, Li W Y, et al. Wear resistance and corrosion resistance of laser cladding WC/Co06 coating on the piston rod of hydraulic damper [J]. Surf. Technol., 2023, 52(3): 217
|
[54] |
(肖居鹏, 杨学锋, 李万洋 等. 液压阻尼器活塞杆激光熔覆WC/Co06涂层耐磨耐腐蚀性能 [J]. 表面技术, 2023, 52(3): 217)
|
[55] |
Ye J L, Feng Y Q, Li Z G, et al. Composition design, microstructures and properties of Fe‑based wear‑ and corrosion‑resistant coatings by laser cladding [J]. Chin. J. Lasers, 2023, 50: 1202210
|
[55] |
(叶界梁, 冯悦峤, 李铸国 等. 激光熔覆耐磨耐蚀铁基涂层的设计与组织性能研究 [J]. 中国激光, 2023, 50: 1202210)
|
[56] |
Cui C, Wu M P, Miao X J, et al. The effect of laser energy density on the geometric characteristics, microstructure and corrosion resistance of Co-based coatings by laser cladding [J]. J. Mater. Res. Technol., 2021, 15: 2405
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|