Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 849-858     CSTR: 32134.14.1005.4537.2024.378      DOI: 10.11902/1005.4537.2024.378
  综合评述 本期目录 | 过刊浏览 |
42CrMo钢表面激光熔覆涂层的研究现状及进展
孙方红1, 任延杰2(), 宋文卿3
1 浙江科技大学创新创业学院 杭州 310023
2 浙江科技大学机械与能源工程学院 杭州 310023
3 惠雨恩科技(深圳)有限公司 深圳 518132
Research Status and Progress of Laser Clad Coatings on 42CrMo Steel
SUN Fanghong1, REN Yanjie2(), SONG Wenqing3
1 College of Innovation and Entrepreneurship, Zhejiang University of Science and Technology, Hangzhou 310023, China
2 School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
3 Huiyun Technology (Shenzhen) Co., Ltd., Shenzhen 518132, China
引用本文:

孙方红, 任延杰, 宋文卿. 42CrMo钢表面激光熔覆涂层的研究现状及进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 849-858.
Fanghong SUN, Yanjie REN, Wenqing SONG. Research Status and Progress of Laser Clad Coatings on 42CrMo Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 849-858.

全文: PDF(7703 KB)   HTML
摘要: 

42CrMo钢作为高强度合金钢,在机械制造、汽车工程、石油化工、航天航空等领域得到广泛应用,然而,为应对更严苛的使用环境并拓宽其应用范围,进一步提升其耐磨性和耐蚀性显得尤为迫切。文章综述了近年来42CrMo钢表面激光熔覆涂层的国内外研究进展,分析了熔覆材料、工艺优化、熔覆层微观组织与显微硬度、耐磨性及磨损机理、耐蚀性及耐蚀机理等方面研究进展及存在问题,并对42CrMo钢表面激光熔覆技术的发展趋势进行了展望,旨在为提升42CrMo钢的综合性能提供理论依据和技术参考。

关键词 42CrMo钢激光熔覆工艺参数磨损机理耐蚀机理    
Abstract

As a high-strength alloy steel, 42CrMo steel is extensively used in the fields of machinery manufacturing, automotive engineering, petrochemicals, and aerospace et al. due to its remarkable mechanical properties. Nevertheless, in order to cope with the harsher service environments, it is imperative to further enhance its wear resistance and corrosion resistance. This paper comprehensively reviews the research progress of laser cladding technology applied to 42CrMo steel at home and abroad. It examines the recent progress and existing problems in aspects such as the cladding materials, optimization of process parameters, microstructure and microhardness, wear resistance and wear mechanisms, corrosion resistance and anticorrosion mechanism of the clad coatings. Moreover, it looks forward to the development trend of laser cladding technology for the surface modification of 42CrMo steel, aiming to provide a theoretical basis and technical reference for enhancing the comprehensive performance of 42CrMo steel.

Key words42CrMo steel    laser cladding    process parameters    wear mechanism    anticorrosionmechanism
收稿日期: 2024-11-22      32134.14.1005.4537.2024.378
ZTFLH:  TG174.4  
基金资助:国家自然科学基金(52171066);浙江省教育厅一般科研项目(Y202352005)
通讯作者: 任延杰,E-mail:yjren@zust.edu.cn,研究方向为动力装备高温材料服役安全性能评价
Corresponding author: REN Yanjie, E-mail: yjren@zust.edu.cn
作者简介: 孙方红,男,1980年生,博士,副教授

Process

Coating

NiCrBSiFe55Stellite-6TiCCo-WC-TiC- diamond-ZrH2FeCoNiCr- Nb0.5Mo0.25
Equipment modelYLS-6000ZKZM RF-2000TRUMPFDDISK-12003UnspecifiedFWC100C100-F200FL020
Laser power / kW222.530.701.2-1.4
Scanning speed mm·min-1360260480220180180
Powder feed rate g·min-115-141521-
Overlapping ratio / %-40303030-
Spot diameter / mm-343-4
Pretreatment120 ℃, 2 h120 ℃, 2 hTemperature not300 ℃300-310 ℃,< 100 ℃, 2 h
specified, 2 hSandbox insulation
Coating thickness-Single layer:-2-5-1.5
mm0.582 mm, three
layers: 1.55 mm
Powder particle size45-10550-10050-16050-100Co and WC: 6038-74
μmDiamond powder: 100
TiC and ZrH2: 0.5
表1  42CrMo钢激光熔覆设备及最佳工艺参数[19~24]
图1  42CrMo钢表面激光熔覆制备的4种典型涂层的表面形貌[19,20,41,47]
图2  42CrMo钢表面激光熔覆制备的4种涂层磨痕表面形貌[14,41,46,47]
图3  4种激光熔覆涂层腐蚀后表面形貌[46,54]
[1] Lu H F, Pan C Y, Qin E W, et al. Microstructure and properties of laser clad WC/Ni-based alloy composite coating on 45 steel surface [J]. Heat Treat. Met., 2019, 44(12): 19
[1] (陆海峰, 潘晨阳, 覃恩伟 等. 45钢表面激光熔覆WC/Ni基合金复合覆层的组织和性能 [J]. 金属热处理, 2019, 44(12): 19)
[2] Ding Q Q, Yin M, Ni Y J, et al. Research on roughness and microhardness of laser cladding coating on the inner wall of 42CrMo steel [J]. Appl. Laser, 2022, 42(4): 41
[2] (丁倩倩, 殷 铭, 倪玉吉 等. 42CrMo钢管内壁激光熔覆层粗糙度及显微硬度研究 [J]. 应用激光, 2022, 42(4): 41)
[3] Zhang Z D, Wang D, Liu G L, et al. Surface modification of 42CrMo steels: a review from wear and corrosion resistance [J]. Coatings, 2024, 14: 337
[4] Xu H H. Study on the microstructure and properties of laser cladding Ni-based WC + CeO2 coatings on the surface of 42CrMo steel [D]. Qingdao: Qingdao University of Technology, 2021
[4] (徐欢欢. 42CrMo钢表面激光熔覆Ni基WC + CeO2涂层组织与性能的研究 [D]. 青岛: 青岛理工大学, 2021)
[5] Wu D L, Wu H T, Sun H, et al. Research status and development of laser cladding high temperature protective coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 725
[5] (吴多利, 吴昊天, 孙 珲 等. 激光熔覆高温防护涂层研究现状及发展方向 [J]. 中国腐蚀与防护学报, 2023, 43: 725)
doi: 10.11902/1005.4537.2023.160
[6] Pei S B, Wan D Y, Zhou P, et al. Research progress on preparation, microstructure, oxidation-and corrosion-resistance of high-entropy alloy coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 873
[6] (裴书博, 万冬阳, 周 萍 等. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 873)
doi: 10.11902/1005.4537.2021.249
[7] Liu H Q, Zhou W. Research progress of laser cladding materials [J]. Mod. Manuf. Technol. Equip., 2017, 53(11): 83
[7] (刘海青, 周 伟. 激光熔覆材料的研究进展 [J]. 现代制造技术与装备, 2017, 53(11): 83)
[8] Zhu L N, Xu B S, Wang H D, et al. Microstructure and nanoindentation measurement of residual stress in Fe-based coating by laser cladding [J]. J. Mater. Sci., 2012, 47: 2122
[9] Zhao J, Gao Q W, Wang H Q, et al. Microstructure and mechanical properties of Co-based alloy coatings fabricated by laser cladding and plasma arc spray welding [J]. J. Alloy. Compd., 2019, 785: 846
[10] Lyu Y Z, Sun Y F, Yang Y. Non-vacuum sintering process of WC/W2C reinforced Ni-based coating on steel [J]. Met. Mater. Int., 2016, 22: 311
[11] Liu S S, Chen H Y, Zhao X, et al. Corrosion behavior of Ni-based coating containing spherical tungsten carbides in hydrochloric acid solution [J]. J. Iron Steel Res. Int., 2019, 26: 191
[12] Wan L, Cheng M Y, Fu G Y, et al. Annular laser cladding of CuPb10Sn10 copper alloy for high-quality anti-friction coating on 42CrMo steel surface [J]. Opt. Laser Technol., 2023, 158: 108878
[13] Cheng M Y, Shi T, Wan L, et al. Performance regulation of annular laser cladding CuPb10Sn10 anti-friction coating microstructure [J]. Surf. Technol., 2023, 52(7): 336
[13] (程梦颖, 石 拓, 万 乐 等. 环形束激光熔覆CuPb10Sn10减摩涂层组织性能调控 [J]. 表面技术, 2023, 52(7): 336)
[14] Luo L B. Microstructure and properties of wear resistant layer for 42CrMo steel pick with the laser cladding [D]. Taiyuan: Taiyuan University of Technology, 2023
[14] (罗亮斌. 42CrMo钢截齿激光熔覆耐磨层组织及性能 [D]. 太原: 太原理工大学, 2023)
[15] Tan D Q, Yang X Q, He Q, et al. Impact-sliding wear properties of PVD CrN and WC/C coatings [J]. Surf. Eng., 2021, 37: 12
[16] Kuang S H, Zhou F, Liu W C, et al. Al2O3/MC particles reinforced MoFeCrTiWNb x high-entropy-alloy coatings prepared by laser cladding [J]. Surf. Eng., 2022, 38: 158
[17] Yuan S H, Li H L, Han C F, et al. FeCoNiCrAl0.6 high-entropy alloy coating on Q235 steel fabricated by laser cladding [J]. Mater. Sci. Technol., 2023, 39: 705
[18] Gong J T, Shu L S, Wang J S, et al. Research status and development trend of laser cladding process optimization method [J]. Laser Optoelectron. Prog., 2023, 60: 1900003
[18] (巩江涛, 舒林森, 王家胜 等. 激光熔覆工艺优化方法研究现状及发展趋势 [J]. 激光与光电子学进展, 2023, 60: 1900003)
[19] Fu D M, Wang K M. Influence of scanning speed on forming of NiCrBSi composite coating on 42CrMo steel by laser cladding [J]. Mech. Engineer, 2017, (8): 97
[19] (符定梅, 王开明. 扫描速度对42CrMo表面激光熔覆NiCrBSi熔覆层成形的影响 [J]. 机械工程师, 2017, (8): 97)
[20] Lu Q L, Wang J, Qi X X, et al. Preparation technology of laser clad Fe-based coating for shield sealing runway repair [J]. Heat Treat. Met., 2022, 47(1): 202
[20] (卢庆亮, 王 静, 戚小霞 等. 面向盾构机密封跑道修复的激光熔覆Fe基涂层制备工艺 [J]. 金属热处理, 2022, 47(1): 202)
doi: 10.13251/j.issn.0254-6051.2022.01.034
[21] Cui C, Wu M P, Cheng W. Effect of laser power on corrosion resistance of 42CrMo cladding Stellite-6 coating [J]. Laser Optoelectron. Prog., 2019, 56: 241403
[21] (崔 宸, 武美萍, 程 伟. 激光功率对42CrMo熔覆Stellite-6涂层耐腐蚀性能的影响 [J]. 激光与光电子学进展, 2019, 56: 241403)
[22] Xiao Z L, Li X F, He T Y, et al. Research and analysis on microstructure and properties of wear-resistant layer of laser cladding high-end pick [J]. Hot Work. Technol., 2025, 54(6): 99
[22] (肖志玲, 李晓峰, 何天运 等. 激光熔覆高端截齿耐磨层组织和性能研究分析 [J]. 热加工工艺, 2025, 54(6): 99)
[23] Zhou Z J, Jiang F L, Yang F Z, et al. Eutectic behavior and wear and corrosion resistance mechanisms of FeCoNiCrNb0.5Mo0.25 high-entropy alloy laser cladding layer microstructure [J]. Chin. J. Lasers, 2023, 50: 0402011
[23] (周子钧, 姜芙林, 杨发展 等. FeCoNiCrNb0.5Mo0.25高熵合金激光熔覆层组织的共晶化行为及耐磨耐蚀机理 [J]. 中国激光, 2023, 50: 0402011)
[24] Cui C. Study on the optimization of laser cladding technology for cobalt-based coatings on 42CrMo steel surface [D]. Wuxi: Jiangnan University, 2021
[24] (崔 宸. 42CrMo钢表面激光熔覆制备钴基涂层的工艺优化研究 [D]. 无锡: 江南大学, 2021)
[25] Zhang H Q, Liu H, Liu Y, et al. Research status and analysis of Co-based composite coatings prepared by laser cladding [J]. Laser Optoelectron. Prog., 2023, 60: 0900004
[25] (张好强, 刘 豪, 刘 印 等. 激光熔覆制备钴基复合涂层研究现状分析 [J]. 激光与光电子学进展, 2023, 60: 0900004)
[26] Wen J H, Ding Y C, Yang Z G, et al. Research status and prospect of laser surface modification technology [J]. MW Met. Form., 2022, (11): 10
[26] (温家浩, 丁永春, 杨中桂 等. 激光表面改性技术研究现状与展望 [J]. 金属加工(热加工), 2022, (11): 10)
[27] Ding T, Zhang Y H, Li J J, et al. Research status and prospect of laser cladding technology on stainless steel surface [J]. Heat Treat. Met., 2022, 47(2): 205
doi: 10.13251/j.issn.0254-6051.2022.02.037
[27] (丁 涛, 张云华, 李俊杰 等. 不锈钢表面激光熔覆技术研究现状与展望 [J]. 金属热处理, 2022, 47(2): 205)
[28] Farshidianfar M H, Khajepour A, Gerlich A. Real-time control of microstructure in laser additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2016, 82: 1173
[29] Marzban J, Ghaseminejad P, Ahmadzadeh M H, et al. Experimental investigation and statistical optimization of laser surface cladding parameters [J]. Int. J. Adv. Manuf. Technol., 2015, 76: 1163
[30] Hu G F, Yang Y, Qi K, et al. Investigation of the microstructure and properties of NiCrBSi coating obtained by laser cladding with different process parameters [J]. Trans. Indian Inst. Met., 2020, 73: 2623
[31] Liu J W. Laser melting of WC particle-reinforced cobalt-based alloy gradient coatings on 42CrMo steel [D]. Taiyuan: Taiyuan University of Technology, 2023
[31] (刘家伟. 42CrMo钢激光熔覆WC颗粒增强钴基合金梯度涂层的研究 [D]. 太原: 太原理工大学, 2023)
[32] Jiang F, Yan L, Huang Y, et al. Review on magnetic field assisted machining technology [J]. J. Mech. Eng., 2016, 52(17): 1
doi: 10.3901/JME.2016.17.001
[32] (姜 峰, 言 兰, 黄 阳 等. 磁场辅助加工的研究现状及其发展趋势 [J]. 机械工程学报, 2016, 52(17): 1)
[33] Gong J T, Shu L S, Wang J S, et al. Research status and development trend of laser cladding process optimization method [J]. Laser Optoelectron. Prog., 2023, 60: 1900003
[33] (巩江涛, 舒林森, 王家胜 等. 激光熔覆工艺优化方法研究现状及发展趋势 [J]. 激光与光电子学进展, 2023, 60: 1900003)
[34] Qi K, Yang Y, Sun R, et al. Effect of magnetic field on tribological properties of Co-based alloy layer produced by laser cladding on 42CrMo [J]. Mater. Lett., 2021, 282: 128893
[35] Qi K, Yang Y, Liang W X, et al. Influence of the anomalous elastic modulus on the crack sensitivity and wear properties of laser cladding under the effects of a magnetic field and Cr addition [J]. Surf. Coat. Technol., 2021, 423: 127575
[36] Qi K, Yang Y, Sun R, et al. Effect of magnetic field on crack control of Co-based alloy laser cladding [J]. Opt. Laser Technol., 2021, 141: 107129
[37] Ju J, Zhou Y, Kang M D, et al. Optimization of process parameters, microstructure, and properties of laser cladding Fe-based alloy on 42CrMo steel roller [J]. Materials, 2018, 11: 2061
[38] Cai Z H, Qin H, Liu J, et al. Research of microstructure and performance of laser cladding Fe-based medium manganese alloy [J]. Appl. Laser, 2018, 38: 726
[38] (蔡志海, 秦 航, 柳 建 等. 中锰铁基合金激光熔覆层组织性能研究 [J]. 应用激光, 2018, 38: 726)
[39] Yang Z F, Zou Y, Shi S Q, et al. Optimization of SD-3 nickel‑based alloy coating by single channel laser cladding using orthogonal experimental method [J]. Trans. Indian Inst. Met., 2024, 77: 1509
[40] Zhang Z J, Li X M, Zhu C J, et al. Effect of B4C addition on morphology and properties of Stellite6 + B4C laser clad layers on 42CrMo steel surface [J]. Heat Treat. Met., 2024, 49(7): 200
[40] (张泽疆, 李新梅, 朱春金 等. B4C添加量对42CrMo钢表面Stellite6 + B4C激光熔覆层形貌与性能的影响 [J]. 金属热处理, 2024, 49(7): 200)
[41] Yang K X, Sun W L, Xiao Q, et al. Study on hardness and wear resistance of laser cladding Fe06 + (TiC/Mo) composite coatings [J]. Laser Technol., 2023, 47: 393
[41] (杨凯欣, 孙文磊, 肖 奇 等. 激光熔覆Fe06 + (TiC/Mo)复合涂层硬度及耐磨性能研究 [J]. 激光技术, 2023, 47: 393)
[42] Zhang X H, Chen C L, Li Y T, et al. Research on microstructure and properties of laser cladding stainless steel powders doped Ni-WC coatings on 42CrMo steel [J]. Hot Work. Technol., 2021, 50(16): 66
[42] (张现虎, 陈成龙, 李远田 等. 42CrMo钢激光熔覆不锈钢粉掺杂Ni-WC涂层的组织及性能研究 [J]. 热加工工艺, 2021, 50(16): 66)
[43] Gu J, Li D Q, Wang K M. Study on microstructure and properties of laser coated Ni-based composite coating on 42CrMo steel [J]. Hot Work. Technol., 2019, 48(24): 111
[43] (顾 建, 李冬青, 王开明. 42CrMo钢表面激光熔覆镍基复合熔覆层组织和性能的研究 [J]. 热加工工艺, 2019, 48(24): 111)
[44] Wang D S, Tian Z J. Microstructure and wear resistance of NiCrBSi/WC-Co composite coating by laser cladding [J]. Mater. Mech. Eng., 2019, 43(11): 16
doi: 10.11973/jxgccl201911005
[44] (王东生, 田宗军. 激光熔覆NiCrBSi/WC-Co复合涂层的组织与耐磨性能 [J]. 机械工程材料, 2019, 43(11): 16)
doi: 10.11973/jxgccl201911005
[45] Xu H, Lu Y P, Zhang H, et al. Laser cladding in-situ nano-submicron TiC reinforced ultrafinegrained Fe-based composite layers on 42CrMo steel [J]. Int. J. Electrochem. Sci., 2019, 14: 9974
[46] Yu W K. Study on preparation and properties of laser cladding CoCrFeNi-X high entropy alloy coatings [D]. Wuhan: Huazhong University of Science and Technology, 2021
[46] (余文康. 激光熔覆CoCrFeNi-X高熵合金涂层的制备与性能研究 [D]. 武汉: 华中科技大学, 2021)
[47] Niu H Y, Wang K M, Ma P F, et al. Investigation on the microstructure and wear resistance of laser coated Fe-based coating [J]. Appl. Laser, 2023, 43(12): 21
[47] (牛海云, 王开明, 马鹏飞 等. 激光熔覆铁基涂层显微组织和摩擦磨损性能的研究 [J]. 应用激光, 2023, 43(12): 21)
[48] Han J T, Wu M P, Cui C. Effect of laser power on microstructure and friction and wear properties of laser clad layer on 42CrMo steel [J]. Heat Treat. Met., 2020, 45(11): 214
doi: 10.13251/j.issn.0254-6051.2020.11.041
[48] (韩基泰, 武美萍, 崔 宸. 激光功率对42CrMo钢激光熔覆层组织和摩擦磨损性能的影响 [J]. 金属热处理, 2020, 45(11): 214)
doi: 10.13251/j.issn.0254-6051.2020.11.041
[49] Cui C, Wu M P, He R, et al. Effect of CeO2 addition on grain refinement and mechanical properties of Stellite-6 coating fabricated by laser cladding [J]. J. Therm. Spray Technol., 2022, 31: 2621
[50] Guo H R. Research on microstructure and properties of laser cladded high-WC content composite coatings on 42CrMo steel [D]. Harbin: Harbin Institute of Technology, 2023
[50] (郭浩然. 42CrMo钢激光熔覆高WC含量复合涂层组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2023)
[51] Lin L L, Chen X, Du K P, et al. High temperature wear properties of laser cladding AlCoCrFeNi high entropy alloy coatings [J]. Therm. Spray Technol., 2024, 16(2): 81
[51] (林丽丽, 陈 星, 杜开平 等. 激光熔覆AlCoCrFeNi高熵合金涂层的高温磨损性能 [J]. 热喷涂技术, 2024, 16(2): 81)
[52] Liu J S, Shi Y. Microstructure and wear behavior of laser-cladded Ni-based coatings decorated by graphite particles [J]. Surf. Coat. Technol., 2021, 412: 127044
[53] Liu X Y, Guo Z F, Lu Z W, et al. Tribological behavior of the wear-resistant and self-lubrication integrated interface structure with ordered micro-pits [J]. Surf. Coat. Technol., 2023, 454: 129159
[54] Xiao J P, Yang X F, Li W Y, et al. Wear resistance and corrosion resistance of laser cladding WC/Co06 coating on the piston rod of hydraulic damper [J]. Surf. Technol., 2023, 52(3): 217
[54] (肖居鹏, 杨学锋, 李万洋 等. 液压阻尼器活塞杆激光熔覆WC/Co06涂层耐磨耐腐蚀性能 [J]. 表面技术, 2023, 52(3): 217)
[55] Ye J L, Feng Y Q, Li Z G, et al. Composition design, microstructures and properties of Fe‑based wear‑ and corrosion‑resistant coatings by laser cladding [J]. Chin. J. Lasers, 2023, 50: 1202210
[55] (叶界梁, 冯悦峤, 李铸国 等. 激光熔覆耐磨耐蚀铁基涂层的设计与组织性能研究 [J]. 中国激光, 2023, 50: 1202210)
[56] Cui C, Wu M P, Miao X J, et al. The effect of laser energy density on the geometric characteristics, microstructure and corrosion resistance of Co-based coatings by laser cladding [J]. J. Mater. Res. Technol., 2021, 15: 2405
[1] 张雄斌, 党恩, 于晓婧, 汤玉斐, 赵康. 油气田用马氏体不锈钢腐蚀性能研究现状与进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[2] 杨海云, 刘春泉, 熊芬, 陈敏纳, 谢岳林, 彭龙生, 孙胜, 刘海洲. 超高速激光熔覆制备耐腐蚀涂层研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[3] 邓双九, 李昌, 余梦辉, 韩兴. IN625激光熔覆层腐蚀致微裂纹扩展机理研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[4] 李海燕, 刘欢, 王阁义, 张秀菊, 陈同舟, 俞云, 姚洪. 锅炉受热面的冲蚀磨损与防护综述[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
[5] 吴多利, 吴昊天, 孙珲, 史建军, 魏新龙, 张超. 激光熔覆高温防护涂层研究现状及发展方向[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[6] 裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[7] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[8] 张卫国; 李; 林; 姚素薇; 郑国钦 . 纳米炭黑改性涂料在NaCl溶液中的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2005, 25(6): 351-355 .
[9] 王昆林;张庆波;魏兴国;朱允明. La_2O_3对镍基合金激光熔覆层耐蚀性的影响[J]. 中国腐蚀与防护学报, 1998, 18(3): 237-240.