Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 397-406     CSTR: 32134.14.1005.4537.2024.219      DOI: 10.11902/1005.4537.2024.219
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
典型无缝钢管钢掺氢天然气环境适应性及氢致损伤机理
程凯源1, 彭杨2, 黄峰1(), 程向龙2, 徐云峰1, 彭志贤1, 刘静1
1.武汉科技大学 湖北省海洋工程材料及服役安全工程技术研究中心 武汉 430081
2.衡钢华菱钢管有限公司 衡阳 421001
Adaptability of Typical Seamless Tube Steels to Hydrogen-blended Natural Gas Environments and Hydrogen- induced Damage Mechanism
CHENG Kaiyuan1, PENG Yang2, HUANG Feng1(), CHENG Xianglong2, XU Yunfeng1, PENG Zhixian1, LIU Jing1
1.Hubei Engineering Technology Research Center of Marine Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China
2.Hengsteel Valin Steel pipe Co., Ltd., Hengyang 421001, China
引用本文:

程凯源, 彭杨, 黄峰, 程向龙, 徐云峰, 彭志贤, 刘静. 典型无缝钢管钢掺氢天然气环境适应性及氢致损伤机理[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
Kaiyuan CHENG, Yang PENG, Feng HUANG, Xianglong CHENG, Yunfeng XU, Zhixian PENG, Jing LIU. Adaptability of Typical Seamless Tube Steels to Hydrogen-blended Natural Gas Environments and Hydrogen- induced Damage Mechanism[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 397-406.

全文: PDF(28500 KB)   HTML
摘要: 

针对常用中低强度无缝钢管钢掺氢输送天然气环境适应性问题,本文系统研究了不同掺氢比例体积分数分别为0%、5%、10%、15%、20%和100%对10 MPa天然气环境下钢管钢氢脆(HE)敏感性影响规律及机理。结果表明,低强度L245、X42钢在低掺氢比例环境(≤ 10%)中能保持良好塑性,高掺氢比例环境中(≥ 20%),延伸率降低,HE敏感性增加;中强度X52钢的HE敏感性维持在较高水平。断口观察表明,低掺氢比例环境中L245与X42钢断口韧性断裂明显,X52钢则已出现部分脆性特征,HE主要由氢增强局部塑性(HELP)机制驱动,同时伴有氢加速应变诱导空位(HESIV)机制;高掺氢比例中,3种钢都表现为由HELP和氢致解理(HEDE)混合机制驱动的脆性断裂特征。综合考虑认为,低于10%的掺氢比例对于上述3种无缝钢管钢是一个相对安全的服役配比。

关键词 无缝钢管钢掺氢比例氢脆敏感性HEDEHELP    
Abstract

Herein, the effect of the 10 MPa natural gas blended with 0%, 5%, 10%, 15%, 20% and 100% (volume fraction) hydrogen respectively on the hydrogen embrittlement (HE) susceptibility of typical home-made medium- and low-strength seamless tube steels L245、X42 and X52 by means of slow strain rate tensile test (SSRT), aiming in understanding the environmental adaptability of the relevant steel tubes. The results show that low-strength steels L245 and X42 maintain good ductility at low hydrogen-blending ratio (≤ 10%), showing minimal influence of hydrogen. However, at higher hydrogen-blending ratios (≥ 20%), the elongation at break decreases significantly, and the HE susceptibility rises. The HE susceptibility of medium strength steel X52 is relatively high at 5% hydrogen and increases linearly by higher hydrogen-blending rations. The fracture morphology aligns with SSRT results, where steels L245 and X42 exhibit good plasticity and toughness at lower hydrogen-blending ratio (≤ 10%), while X52 steel shows partial brittleness. HE is mainly driven by the hydrogen enhanced localized plasticity (HELP) mechanism, accompanied by hydrogen enhanced strain-induced vacancies (HESIV) mechanism. At high hydrogen-blending ratios (≥ 20%), the three steels all show brittle fracture characteristics, driven by a mechanism of mixed HELP and hydrogen enhanced decohesion (HEDE). Overall, a hydrogen-blending ratio below 10% is considered as a safe operating limit for these seamless steel pipes.

Key wordsseamless tubular steel    hydrogen mixing ratio    hydrogen embrittlement sensitivity    HEDE    HELP
收稿日期: 2024-07-23      32134.14.1005.4537.2024.219
ZTFLH:  TG174  
基金资助:国家自然科学基金(U21A20113);国家自然科学基金(52231003);2023年湖北省重大攻关项目(2023BAA003)
通讯作者: 黄峰,E-mail:huangfeng@wust.edu.cn,研究方向为高性能钢铁材料及服役安全
Corresponding author: HUANG Feng, E-mail: huangfeng@wust.edu.cn
作者简介: 程凯源,男,2000年生,硕士生
Experimental materialsCSiMnCuNiCrAl
L2450.0620.261.140.0420.0230.0270.02
X420.0590.2781.2970.0450.0230.0260.026
X520.0770.2841.2380.0470.0230.0460.028
表1  实验用钢主要化学成分 (mass fraction / %)
图1  金相及拉伸试样取样位置
Experimental materialsYield strength / MPaTensile strength / MPaElongation rate / %
L245≥ 245≥ 415≥ 20
X42≥ 290≥ 420
X52≥ 358≥ 460
表2  实验用钢力学性能指标
图2  拉伸试样尺寸图
图3  3种无缝钢管钢的金相及FE-SEM照片
图4  3种不同无缝钢管钢在不同掺氢比例下的应力-应变曲线
图5  3种不同无缝钢管钢在不同掺氢比例下的抗拉强度
图6  3种不同无缝钢管钢在不同掺氢比例下的氢脆敏感性
图7  L245钢在不同掺氢比例下的宏观断口形貌照片
图8  L245钢在不同掺氢比例下的断口的局部特征放大图
图9  X42钢在不同掺氢比例下的断口形貌图
图10  X42钢在不同掺氢比例下的断口的局部特征放大图
图11  X52钢在不同掺氢比例下的断口形貌图
图12  X52钢在不同掺氢比例下的断口的局部特征放大图
1 Wang G, Zheng J Y, Jiang L J, et al. The development of hydrogen energy in China [J]. Sci. Technol. Rev., 2017, 35(22): 105
doi: 10.3981/j.issn.1000-7857.2017.22.014
1 王 赓, 郑津洋, 蒋利军 等. 中国氢能发展的思考 [J]. 科技导报, 2017, 35(22): 105
2 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
2 姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
3 Yi W J, Liang Q, Pei Q B. Enhance the hydrogen application in China's energy system to accelerate the energy transition: status and progress [J]. Environ. Prot., 2018, 46(2): 30
3 伊文婧, 梁 琦, 裴庆冰. 氢能促进我国能源系统清洁低碳转型的应用及进展 [J]. 环境保护, 2018, 46(2): 30
4 Yang X H, Zhang G Z. Oil Pipeline Design and Management [M]. Beijing: University of Petroleum Press, 1996
4 杨筱蘅, 张国忠. 输油管道设计与管理 [M]. 北京: 石油大学出版社, 1996
5 Jiang Q M, Wang Q, Xie P, et al. Development status and analysis of long-distance hydrogen pipeline at home and abroad [J]. Oil-Gasfield Surf. Eng., 2019, 38(12): 6
5 蒋庆梅, 王 琴, 谢 萍 等. 国内外氢气长输管道发展现状及分析 [J]. 油气田地面工程, 2019, 38(12): 6
6 Wang H J, Ming H L, Wang J Q, et al. Effect of small amount of O2 and CO on hydrogen embrittlement susceptibility of X52 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 371
6 万红江, 明洪亮, 王俭秋 等. H2中O2和CO掺杂对X52管线钢氢脆敏感性影响研究[J]. 中国腐蚀与防护学报, 2025, 45: 371
7 Godula-Jopek A, Stolten D. Hydrogen Production by Electrolysis [M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2015: 2
8 Cheng Y F. Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments [J]. Oil Gas Storage Transp., 2023, 42: 1
8 程玉峰. 高压氢气管道氢脆问题明晰 [J]. 油气储运, 2023, 42: 1
9 Xu Y F, Wang S F, He L, et al. Effect of eco pickled surface treatment on hydrogen embrittlement sensitivity of QStE700TM steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 691
9 徐云峰, 王少峰, 何 龙 等. EPS处理对QStE700TM钢氢脆敏感性影响 [J]. 中国腐蚀与防护学报, 2024, 44: 691
doi: 10.11902/1005.4537.2023.171
10 Wang C L, Zhang J X, Liu C W, et al. Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests [J]. Int. J. Hydrog. Energy, 2023, 48: 243
11 Meng B, Gu C H, Zhang L, et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures [J]. Int. J. Hydrog. Energy, 2017, 42: 7404
12 Nguyen T T, Bae K O, Jaeyeong P, et al. Damage associated with interactions between microstructural characteristics and hydrogen/methane gas mixtures of pipeline steels [J]. Int. J. Hydrog. Energy, 2022, 47: 31499
13 Hardie D, Charles E A, Lopez A H. Hydrogen embrittlement of high strength pipeline steels [J]. Corros. Sci., 2006, 48: 4378
14 Nanninga N E, Levy Y S, Drexler E S, et al. 14 Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments [J]. Corros. Sci., 2012; 59: 1
15 Wang Y F, Gong J M, Jiang W C. A quantitative description on fracture toughness of steels in hydrogen gas [J]. Int. J. Hydrog. Energy, 2013, 38: 12503
16 Serebrinsky S, Carter E A, Ortiz M. A quantum-mechanically informed continuum model of hydrogen embrittlement [J]. J. Mech. Phys. Solids, 2004, 52: 2403
17 Song J, Curtin W A. Atomic mechanism and prediction of hydrogen embrittlement in iron [J]. Nat. Mater., 2013, 12: 145
doi: 10.1038/nmat3479 pmid: 23142843
18 Dadfarnia M, Novak P, Ahn C D, et al. Recent advances in the study of structural materials compatibility with hydrogen [J]. Adv. Mater., 2010, 22: 1128
19 Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182
20 Djukic M B, Bakic G M, Zeravcic V S, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion [J]. Eng. Fract. Mech., 2019, 216: 106528
21 Robertson I M, Tabata T, Wei W, et al. Hydrogen embrittlement and grain boundary fracture [J]. Scr. Metall., 1984, 18: 841
22 Nimmagadda P B R, Sofronis P. Creep strength of fiber and particulate composite materials: the effect of interface slip and diffusion [J]. Mech. Mater., 1996, 23: 1
23 Gao S, Chen M C, Chen S, et al. Yielding behavior and its effect on uniform elongation of fine grained IF steel [J]. Mater. Trans., 2014, 55: 73
24 Gerberich W W, Oriani R A, Lji M J, et al. The necessity of both plasticity and brittleness in the fracture thresholds of iron [J]. Philos. Mag., 1991, 63A: 363
25 Nagumo M. Hydrogen related failure of steels-a new aspect [J]. Mater. Sci. Technol., 2004, 20: 940
26 Nie Y H, Kimura Y, Inoue T, et al. Hydrogen embrittlement of a 1500-MPa tensile strength level steel with an ultrafine elongated grain structure [J]. Metall. Mater. Trans., 2012, 43A: 1670
27 Wang S, Martin M L, Robertson I M, et al. Effect of hydrogen environment on the separation of Fe grain boundaries [J]. Acta Mater., 2016, 107: 279
28 Sasaki D, Koyama M, Noguchi H. Factors affecting hydrogen-assisted cracking in a commercial tempered martensitic steel: Mn segregation, MnS, and the stress state around abnormal cracks [J]. Mater. Sci. Eng., 2015, 640A: 72
[1] 张慧云, 郑留伟, 梁伟. 退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[2] 陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[3] 徐云峰, 王少峰, 何龙, 刘冬, 黄峰, 刘静. EPS处理对QStE700TM钢氢脆敏感性影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[4] 王贞, 刘静, 张施琦, 黄峰. 应变速率对预充氢DP780钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 106-112.
[5] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[6] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.