|
|
超高速激光熔覆制备耐腐蚀涂层研究进展 |
杨海云1, 刘春泉1( ), 熊芬1( ), 陈敏纳1, 谢岳林1, 彭龙生2, 孙胜3, 刘海洲3 |
1.湖南工学院材料科学与工程学院 衡阳 421002 2.湖南力方轧辊有限公司(湖南省高耐磨合金材料先进制造工程技术研究中心) 衡阳 421681 3.新余华峰特钢有限公司 新余 338099 |
|
Research Progress on Preparation of Corrosion-resistant Coatings by Extreme High-speed Laser Material Deposition |
YANG Haiyun1, LIU Chunquan1( ), XIONG Fen1( ), CHEN Minna1, XIE Yuelin1, PENG Longsheng2, SUN Sheng3, LIU Haizhou3 |
1. School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China 2. Hunan Lifang Roll Co., Ltd., (Hunan Advanced Manufacturing Engineering Technology Research Center of High Wear-resistant Alloy Materials), Hengyang 421681, China 3. Xin Yu Hua Feng Te Gang Co., Ltd., Xingyu 338099, China |
引用本文:
杨海云, 刘春泉, 熊芬, 陈敏纳, 谢岳林, 彭龙生, 孙胜, 刘海洲. 超高速激光熔覆制备耐腐蚀涂层研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
Haiyun YANG,
Chunquan LIU,
Fen XIONG,
Minna CHEN,
Yuelin XIE,
Longsheng PENG,
Sheng SUN,
Haizhou LIU.
Research Progress on Preparation of Corrosion-resistant Coatings by Extreme High-speed Laser Material Deposition[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 847-862.
[1] |
Fu K, Zhong C, Zhang L, et al. Effect of multiple thermal cycling on the microstructure and microhardness of Inconel 625 by high-speed laser cladding [J]. J. Mater. Res. Technol., 2023, 24: 1093
|
[2] |
Liang Y, Liao Z Y, Zhang L L, et al. A review on coatings deposited by extreme high-speed laser cladding: processes, materials, and properties [J]. Opt. Laser Technol., 2023, 164: 109472
|
[3] |
Xu Z Y, Yuan J F, Wu M Y, et al. Effect of laser cladding parameters on Inconel 718 coating performance and multi-parameter optimization [J]. Opt. Laser Technol., 2023, 158: 108850
|
[4] |
Liu C Q, Xiong F, Peng L S, et al. The latest research progress of extreme high-speed laser material deposition—I. Key technical features and advantages, equipment development and technical parameters [J]. Mater. Rep., 2024, 38: 23020075
|
[4] |
刘春泉, 熊 芬, 彭龙生 等. 超高速激光熔覆技术的最新研究进展(一)——关键技术特点及优势, 设备研发及其技术参数 [J]. 材料导报, 2024, 38: 23020075
|
[5] |
Du J L. Investigation on microstructure and properties of Fe-based coatings prepared by extreme-high-speed Laser cladding [D] Zhenjiang: Jiangsu University, 2021
|
[5] |
杜家龙. 超高速激光熔覆Fe基涂层微观组织与性能研究 [D]. 镇江: 江苏大学, 2021
|
[6] |
Yuan W Y, Li R F, Chen Z H, et al. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings [J]. Surf. Coat. Technol., 2021, 405: 126582
|
[7] |
Hu Z Y, Li Y, Lu B W, et al. Effect of WC content on microstructure and properties of high-speed laser cladding Ni-based coating [J]. Opt. Laser Technol., 2022, 155: 108449
|
[8] |
Du C C, Hu L, Ren X D, et al. Cracking mechanism of brittle FeCoNiCrAl HEA coating using extreme high-speed laser cladding [J]. Surf. Coat. Technol., 2021, 424: 127617
|
[9] |
Liu J, Li Y, He P F, et al. Microstructure and properties of ZrB2-SiC continuous gradient coating prepared by high speed laser cladding [J]. Tribol. Int., 2022, 173: 107645
|
[10] |
Ren Y Q, Li L Q, Zhou Y D, et al. In situ synthesized VC reinforced Fe-based coating by using extreme high-speed laser cladding [J]. Mater. Lett., 2022, 315: 131962
|
[11] |
Ye X Y, Wang J S, Ying Q H, et al. Melting behavior of in-flight particles in ultra-high speed laser cladding [J]. J. Mater. Res. Technol., 2023, 24: 7047
|
[12] |
Yang J X, Bai B, Ke H, et al. Effect of metallurgical behavior on microstructure and properties of FeCrMoMn coatings prepared by high-speed laser cladding [J]. Opt. Laser Technol., 2021, 144: 107431
|
[13] |
Ge T, Chen L, Gu P F, et al. Microstructure and corrosion resistance of TiC/Inconel 625 composite coatings by extreme high speed laser cladding [J]. Opt. Laser Technol., 2022, 150: 107919
|
[14] |
Shen F M, Tao W, Li L Q, et al. Effect of microstructure on the corrosion resistance of coatings by extreme high speed laser cladding [J]. Appl. Surf. Sci., 2020, 517: 146085
|
[15] |
Zhou L, Ma G Z, Zhao H C, et al. Research status and prospect of extreme high-speed laser cladding technology [J]. Opt. Laser Technol., 2024, 168: 109800
|
[16] |
Ren Y Q, Chang S, Wu Y C, et al. Effect of inhomogeneous composition on the passive film of AISI 431 coating fabricated by extreme-high-speed laser cladding [J]. Surf. Coat. Technol., 2022, 440: 128496
|
[17] |
Li R X, Pang X M, Liu G, et al. Effect of oxide film on corrosion behavior of NiTi coating prepared by extreme high-speed laser cladding [J]. J. Mater. Sci., 2023, 58: 12414
|
[18] |
Gui Y, Zheng Z J, Gao Y. The bi-layer structure and the higher compactness of a passive film on nanocrystalline 304 stainless steel [J]. Thin Solid Films, 2016, 599: 64
|
[19] |
Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
|
[20] |
Zhang L, Sun J Y, Huang X H, et al. Hot temperature corrosion performance of Inconel 625 coating prepared by ultra-high speed laser cladding technique in biomass boiler [J] Clean Coal Technol., 2022, 28(6): 65
|
[20] |
张 兰, 孙锦余, 黄新河 等. 生物质锅炉超高速激光熔覆Inconel 625涂层抗高温腐蚀性能 [J]. 洁净煤技术, 2022, 28(6): 65
|
[21] |
Sadeghimeresht E, Reddy L, Hussain T, et al. Chlorine-induced high temperature corrosion of HVAF-sprayed Ni-based alumina and chromia forming coatings [J]. Corros. Sci., 2018, 132: 170
|
[22] |
Zhang L, Liu G, Zeng D, et al. Anti-cavitation and erosion resistance of Stellite 6 coating by ultra-high speed laser cladding [J]. Surf. Technol., 2022, 51(4): 167
|
[22] |
张 林, 刘刚, 曾 东 等. 超高速激光熔覆Stellite 6涂层的抗汽蚀及冲蚀性能 [J]. 表面技术, 2022, 51(4): 167
|
[23] |
E M, Hu H X, Guo X M, et al. Microstructure and cavitation erosion resistance of cobalt-based and nickel-based coatings [J]. Trans. Mater. Heat Treat., 2018, 39(1): 90
|
[23] |
鄂 猛, 胡红祥, 国旭明 等. 钴基和镍基涂层的微观组织及空蚀性能 [J]. 材料热处理学报, 2018, 39(1): 90
|
[24] |
Woodford D A. Cavitation-erosion-lnduced phase transformations in alloys [J]. Metall. Trans., 1972, 3: 1137
|
[25] |
Qin C P, Zheng Y G. Cavitation erosion behavior of a laser clad Co-based alloy on 17-4PH stainless steel [J]. Corros. Sci. Prot. Technol., 2011, 23: 209
|
[25] |
秦承鹏, 郑玉贵. 17-4PH不锈钢表面激光熔覆钴基合金涂层的空蚀行为研究 [J]. 腐蚀科学与防护技术, 2011, 23: 209
|
[26] |
Dong H, Guo P F, Han Y, et al. Enhanced corrosion resistance of high speed laser-cladded Ni/316L alloy coating by heat treatment [J]. J. Mater. Res. Technol., 2023, 24: 952
|
[27] |
Li Y Z, Shi Y. Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding [J]. Opt. Laser Technol., 2021, 134: 106632
|
[28] |
Chen L, Zhang X Z, Wu Y, et al. Effect of surface morphology and microstructure on the hot corrosion behavior of TiC/IN625 coatings prepared by extreme high-speed laser cladding [J]. Corros. Sci., 2022, 201: 110271
|
[29] |
Liu J R. Preparation and properties of CoCrFeNiTiAlx high entropy alloy coatings [D]. Xi'an: Chang'an University, 2019: 30
|
[29] |
刘建儒. CoCrFeNiTiAlx高熵合金涂层的制备及性能研究 [D]. 西安: 长安大学, 2019: 30
|
[30] |
Wang Z G, Gao F, Tang S, et al. Effect of twin-related boundaries distribution on carbide precipitation and intergranular corrosion behavior in nuclear-grade higher carbon austenitic stainless steel [J]. Corros. Sci., 2022, 209: 110791
|
[31] |
Wang Q L, Li Y, Zhu J B, et al. Extreme high speed laser cladding 316L coating [J]. J. Phys.: Conf. Ser., 2021, 1965: 012083
|
[32] |
Afkhami S, Dabiri M, Piili H, et al. Effects of manufacturing parameters and mechanical post-processing on stainless steel 316L processed by laser powder bed fusion [J]. Mater. Sci. Eng., 2021, 802A: 140660
|
[33] |
Liu M, Jin Y, Zhang C H, et al. Density-functional theory investigation of Al pitting corrosion in electrolyte containing chloride ions [J]. Appl. Surf. Sci., 2015, 357: 2028
|
[34] |
Ding Y H, Gui W Y, Nie B X, et al. Elimination of elemental segregation by high-speed laser remelting for ultra-high-speed laser cladding Inconel 625 coatings [J]. J. Mater. Res. Technol., 2023, 24: 4118
|
[35] |
Elachouri M, Hajji M S, Kertit S, et al. Some surfactants in the series of 2-(alkyldimethylammonio) alkanol bromides as inhibitors of the corrosion of iron in acid chloride solution [J]. Corros. Sci., 1995, 37: 381
|
[36] |
Xu X, Lu H F, Su Y Y, et al. Comparing corrosion behavior of additively manufactured Cr-rich stainless steel coating between conventional and extreme high-speed laser metal deposition [J]. Corros. Sci., 2022, 195: 109976
|
[37] |
Lu J W, Zhang Y, Huo W T, et al. Electrochemical corrosion characteristics and biocompatibility of nanostructured titanium for implants [J]. Appl. Surf. Sci., 2018, 434: 63
|
[38] |
Milošev I, Žerjav G, Moreno J M C, et al. Electrochemical properties, chemical composition and thickness of passive film formed on novel Ti-20Nb-10Zr-5Ta alloy [J]. Electrochim. Acta, 2013, 99: 176
|
[39] |
Xu X, Lu H F, Qiu J X, et al. High-speed-rate direct energy deposition of Fe-based stainless steel: process optimization, microstructural features, corrosion and wear resistance [J]. J. Manuf. Process., 2022, 75: 243
|
[40] |
Liu M X, Li Z, Chang G R, et al. An investigation of the surface quality and corrosion resistance of laser remelted and extreme high-speed laser cladded Ni-based alloy coating [J]. Int. J. Electrochem. Sci., 2022, 17: 220537
|
[41] |
Wang H N, Cheng Y H, Geng R W, et al. Comparative study on microstructure and properties of Fe-based amorphous coatings prepared by conventional and high-speed laser cladding [J]. J. Alloys Compd., 2023, 952: 169842
|
[42] |
Lv J L, Luo H Y, Liang T X, et al. The effects of grain refinement and deformation on corrosion resistance of passive film formed on the surface of 304 stainless steels [J]. Mater. Res. Bull., 2015, 70: 896
|
[43] |
Chen S N. Research on wear resistance and corrosion resistance of Fe-based alloy coating deposited by ultra-high-speed laser cladding [D]. Tianjin: Tianjin University of Technology and Education, 2022
|
[43] |
陈书楠. 超高速激光熔覆Fe基合金涂层耐磨耐蚀性研究 [D]. 天津: 天津职业技术师范大学, 2022
|
[44] |
Zhang Q, Li M Y, Wang Q, et al. Investigation of the microstructure and properties of CoCrFeNiMo high-entropy alloy coating prepared through high-speed laser cladding [J]. Coatings, 2023, 13: 1211
|
[45] |
Olsson C O A, Landolt D. Passive films on stainless steels-chemistry, structure and growth [J]. Electrochim. Acta, 2003, 48: 1093
|
[46] |
Ryan M P, Newman R C, Thompson G E. A scanning tunnelling microscopy study of structure and structural relaxation in passive oxide films on Fe-Cr alloys [J]. Philos. Mag., 1994, 70B: 241
|
[47] |
Li Z H, Chai L J, Tang Y, et al. 316L stainless steel repaired layers by weld surfacing and laser cladding on a 27SiMn steel: a comparative study of microstructures, corrosion, hardness and wear performances [J]. J. Mater. Res. Technol., 2023, 23: 2043
|
[48] |
Wonneberger R, Seyring M, Freiberg K, et al. Oxidation of stainless steel 316L-Oxide grains with pronounced inhomogeneous composition [J]. Corros. Sci., 2019, 149: 178
doi: 10.1016/j.corsci.2018.12.035
|
[49] |
Hu L W, Liu X, Chen T X, et al. Characterization of laser cladded Zr-Cu-Ni-Al in-situ metallic glass matrix composite coatings with enhanced corrosion-resistance [J]. Vacuum, 2021, 185: 109996
|
[50] |
Sun W T, Huang X H, Zhang J, et al. The roles of microstructural anisotropy in tribo-corrosion performance of one certain laser cladding Fe-based alloy [J]. Friction, 2023, 11: 1673
|
[51] |
Du J L, Xu X, Zhang H M, et al. Microstructure and wear resistance of CoCrFeNiMn coatings prepared by extreme-high-speed laser cladding [J]. Surf. Coat. Technol., 2023, 470: 129821
|
[52] |
Zhou J L, Cheng Y H, Chen Y X, et al. Composition design and preparation process of refractory high-entropy alloys: a review [J]. Int. J. Refract. Met. Hard Mater., 2022, 105: 105836
|
[53] |
Zhang Q, Wang Q, Han B, et al. Comparative studies on microstructure and properties of CoCrFeMnNi high entropy alloy coatings fabricated by high-speed laser cladding and normal laser cladding [J]. J. Alloys Compd., 2023, 947: 169517
|
[54] |
Wei R Z, Ouyang C Y, Wang R, et al. Effect of chromic acid anodization on the corrosion resistance of Fe-based alloy coatings by high-speed laser cladding [J]. Mater. Lett., 2023, 350: 134887
|
[55] |
Shi K, Du X S, Sun Y F, et al. Microstructure and properties of nickel-clad cubic boron nitride-reinforced Ni-based composite coating laser cladding on martensitic stainless steel substrates [J]. J. Therm. Spray Technol., 2023, 32: 2133
|
[56] |
Saeidi K. Stainless steels fabricated by laser melting: scaled-down structural hierarchies and microstructural heterogeneities [D]. Stockholm: Stockholm University, 2016
|
[57] |
Shahriari A, Ghaffari M, Khaksar L, et al. Corrosion resistance of 13wt.% Cr martensitic stainless steels: additively manufactured CX versus wrought Ni-containing AISI 420 [J]. Corros. Sci., 2021, 184: 109362
|
[58] |
Meng L, Zhu B, Liu X, et al. Investigation on the Ni60-WC composite coatings deposited by extreme-high-speed laser-induction hybrid cladding technology: forming characteristics, microstructure and wear behaviors [J]. Surf. Coat. Technol., 2023, 473: 130033
|
[59] |
He B, Zhang L J, Yun X, et al. Comparative study of HVOF Cr3C2-NiCr coating with different bonding layer on the interactive behavior of fatigue and corrosion [J]. Coatings, 2022, 12: 307
|
[60] |
He D G, Lin Y C, Tang Y, et al. Influences of solution cooling on microstructures, mechanical properties and hot corrosion resistance of a nickel-based superalloy [J]. Mater. Sci. Eng., 2019, 746A: 372
|
[61] |
Lou L Y, Liu K C, Jia Y J, et al. Microstructure and properties of lightweight Al0.2CrNbTiV refractory high entropy alloy coating with different dilutions deposited by high speed laser cladding [J]. Surf. Coat. Technol., 2022, 447: 128873
|
[62] |
Fakhar N, Sabbaghian M. A good combination of ductility, strength, and corrosion resistance of fine-grained ZK60 magnesium alloy produced by repeated upsetting process for biodegradable applications [J]. J. Alloys Compd., 2021, 862: 158334
|
[63] |
Li L, Chen Y X, Lu Y J, et al. Effect of heat treatment on the corrosion resistance of selective laser melted Ti6Al4V3Cu alloy [J]. J. Mater. Res. Technol., 2021, 12: 904
|
[64] |
Zheng C, Liu Z D, Liu Q B, et al. Electrochemical behavior and passive film properties of hastelloy C22 alloy, laser-cladding C22 coating, and Ti-6Al-4V alloy in sulfuric acid dew-point corrosion environment [J]. Metals, 2022, 12: 683
|
[65] |
Yang D C, Kan X F, Gao P F, et al. Influence of porosity on mechanical and corrosion properties of SLM 316L stainless steel [J]. Appl. Phys., 2022, 128A: 51
|
[66] |
He X, Song R G, Kong D J. Microstructure and corrosion behaviour of laser-cladding Al-Ni-TiC-CeO2 composite coatings on S355 offshore steel [J]. J. Alloys Compd., 2019, 770: 771
|
[67] |
Instruments Gamry. Basics of electrochemical impedance spectroscopy [R]. Gamry Instruments, 2006
|
[68] |
Xu X, Du J L, Luo K Y, et al. Microstructural features and corrosion behavior of Fe-based coatings prepared by an integrated process of extreme high-speed laser additive manufacturing [J]. Surf. Coat. Technol., 2021, 422: 127500
|
[69] |
Boissy C, Alemany-Dumont C, Normand B. EIS evaluation of steady-state characteristic of 316L stainless steel passive film grown in acidic solution [J]. Electrochem. Commun., 2013, 26: 10
|
[70] |
Gollapudi S. Grain size distribution effects on the corrosion behaviour of materials [J]. Corros. Sci., 2012, 62: 90
|
[71] |
Li T S, Liu L, Zhang B, et al. An investigation on the continuous and uniform thin membrane passive film formed on sputtered nanocrystalline stainless steel [J]. Corros. Sci., 2016, 104: 71
|
[72] |
Man C, Dong C F, Liu T T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid [J]. Appl. Surf. Sci., 2019, 467-468: 193
|
[73] |
Kong D C, Dong C F, Ni X Q, et al. The passivity of selective laser melted 316L stainless steel [J]. Appl. Surf. Sci., 2020, 504: 144495
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|