Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 847-862     CSTR: 32134.14.1005.4537.2023.369      DOI: 10.11902/1005.4537.2023.369
  综合评述 本期目录 | 过刊浏览 |
超高速激光熔覆制备耐腐蚀涂层研究进展
杨海云1, 刘春泉1(), 熊芬1(), 陈敏纳1, 谢岳林1, 彭龙生2, 孙胜3, 刘海洲3
1.湖南工学院材料科学与工程学院 衡阳 421002
2.湖南力方轧辊有限公司(湖南省高耐磨合金材料先进制造工程技术研究中心) 衡阳 421681
3.新余华峰特钢有限公司 新余 338099
Research Progress on Preparation of Corrosion-resistant Coatings by Extreme High-speed Laser Material Deposition
YANG Haiyun1, LIU Chunquan1(), XIONG Fen1(), CHEN Minna1, XIE Yuelin1, PENG Longsheng2, SUN Sheng3, LIU Haizhou3
1. School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
2. Hunan Lifang Roll Co., Ltd., (Hunan Advanced Manufacturing Engineering Technology Research Center of High Wear-resistant Alloy Materials), Hengyang 421681, China
3. Xin Yu Hua Feng Te Gang Co., Ltd., Xingyu 338099, China
引用本文:

杨海云, 刘春泉, 熊芬, 陈敏纳, 谢岳林, 彭龙生, 孙胜, 刘海洲. 超高速激光熔覆制备耐腐蚀涂层研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
Haiyun YANG, Chunquan LIU, Fen XIONG, Minna CHEN, Yuelin XIE, Longsheng PENG, Sheng SUN, Haizhou LIU. Research Progress on Preparation of Corrosion-resistant Coatings by Extreme High-speed Laser Material Deposition[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 847-862.

全文: PDF(29646 KB)   HTML
摘要: 

首先总结了涂层材料元素组成对耐腐蚀性能的影响;其次,从钝化膜、显微组织、位错、低角度晶界、热腐蚀动力学等几个方面总结了其与耐腐蚀性的联系;第三,综述了EHLA与场外辅助技术结合对所制备涂层耐腐蚀性的影响;最后,总结和展望了超高速激光熔覆所制备涂层耐腐蚀性能的强化方法。

关键词 超高速激光熔覆腐蚀行为涂层    
Abstract

With the rapid advancement of industrial technology in recent years, there are higher requirements in better surface related performance, such as wear resistance, heat resistance, corrosion resistance etc. for some key industrial equipment components. Extreme high-speed laser material deposition, as an emerging surface treatment technology, it subverts the traditional metal surface treatment process, using high-energy laser as the heat source, alloy powder as the cladding material. It realizes a significant increase in cladding efficiency through the optimal coupling of powder and laser, and improves the surface properties of the workpiece by cladding coating with special properties with high efficiency and excellent surface accuracy, which also provides many advantages for the preparation of corrosion-resistant coatings. This paper firstly summarizes the influence of the chemical composition of coating materials on the corrosion resistance of coatings. Secondly, it summarizes the relation between passivation film, microstructure, dislocations, low-angle grain boundaries, and thermal corrosion kinetics. Thirdly, it reviews the effect of EHLA combined with off-site assisted technology on corrosion resistance. Lastly, it summarizes and outlooks on the enhancement methods of the corrosion resistance of the coatings prepared by ultrahigh-speed laser melting and cladding.

Key wordsextreme high-speed laser material deposition    corrosion behavior    coating
收稿日期: 2023-11-21      32134.14.1005.4537.2023.369
ZTFLH:  TG178  
基金资助:湖南省科技人才托举工程(2023TJ-X10);湖南省自然科学基金(2023JJ50108);湖南省创新型省份建设专项科普专题(2023ZK4316);湖南省高耐磨合金材料先进制造工程技术研究中心创新能力提升项目(2023ZYQ030);湖南省应用特色学科材料科学与工程学科(湘教通〔2022〕351号);衡阳市“小荷”科技人才项目(衡市科协字〔2022〕68号);湖南省“机械工程”学科科技创新平台开放课题(KFKA2205);湖南工学院自科培育项目(2022HY007);国家级大学生创新创业训练计划项目(S202311528056X)
通讯作者: 刘春泉,E-mail: liuchunquan@hnit.edu.cn,研究方向为特殊钢制备新工艺研究、激光增材制造及再制造;
熊芬,E-mail: xiongfen@hnit.edu.cn,研究方向为金属基新型材料的制备工艺研究
Corresponding author: LIU Chunquan, E-mail: liuchunquan@hnit.edu.cn;
作者简介: 杨海云,男,2002年生,本科生
图1  熔覆速率为100 m/min时涂层的显微组织与成分的STEM分析 [16]
图2  CoCrFeNiTiAlx高熵合金涂层SEM显微结构分析[29]
图3  EHLA制备的Ni/316L合金涂层不同温度热处理后进行动电位极化测试后的表面形貌 [26]
图4  不同涂层中Cr、Fe、Ni、O元素的分布 [13]
图5  不同扫描速率下EHLA涂层的循环电位动态极化图[39]
图6  各试样在75%Na2SO4 + 25%NaCl熔盐中900℃、60 h的热腐蚀动力学曲线 [28]
图7  CLA和EHLA涂层以及基材的Tafel曲线[41]
图8  100 m/min熔覆速率下涂层的HAADF-STEM 图像及上表面相应的EDS面扫,HAADF-STEM 图像和相应的钝化膜 EDS面扫,上表面形成的钝化膜的AFM形貌,钝化膜的HRTEM像,相应的FFT图和涂层的SAED图,枝晶间的钝化膜及EDS面扫,枝晶核上的钝化膜及EDS面扫描[4,16]
图9  钝化膜形成示意图 [16]
图10  不同熔覆速率下极化测试后涂层表面的腐蚀形貌[14]
图11  钝化膜成核及形成过程示意图[15]
图12  EHLA涂层的TEM图[36]
[1] Fu K, Zhong C, Zhang L, et al. Effect of multiple thermal cycling on the microstructure and microhardness of Inconel 625 by high-speed laser cladding [J]. J. Mater. Res. Technol., 2023, 24: 1093
[2] Liang Y, Liao Z Y, Zhang L L, et al. A review on coatings deposited by extreme high-speed laser cladding: processes, materials, and properties [J]. Opt. Laser Technol., 2023, 164: 109472
[3] Xu Z Y, Yuan J F, Wu M Y, et al. Effect of laser cladding parameters on Inconel 718 coating performance and multi-parameter optimization [J]. Opt. Laser Technol., 2023, 158: 108850
[4] Liu C Q, Xiong F, Peng L S, et al. The latest research progress of extreme high-speed laser material deposition—I. Key technical features and advantages, equipment development and technical parameters [J]. Mater. Rep., 2024, 38: 23020075
[4] 刘春泉, 熊 芬, 彭龙生 等. 超高速激光熔覆技术的最新研究进展(一)——关键技术特点及优势, 设备研发及其技术参数 [J]. 材料导报, 2024, 38: 23020075
[5] Du J L. Investigation on microstructure and properties of Fe-based coatings prepared by extreme-high-speed Laser cladding [D] Zhenjiang: Jiangsu University, 2021
[5] 杜家龙. 超高速激光熔覆Fe基涂层微观组织与性能研究 [D]. 镇江: 江苏大学, 2021
[6] Yuan W Y, Li R F, Chen Z H, et al. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings [J]. Surf. Coat. Technol., 2021, 405: 126582
[7] Hu Z Y, Li Y, Lu B W, et al. Effect of WC content on microstructure and properties of high-speed laser cladding Ni-based coating [J]. Opt. Laser Technol., 2022, 155: 108449
[8] Du C C, Hu L, Ren X D, et al. Cracking mechanism of brittle FeCoNiCrAl HEA coating using extreme high-speed laser cladding [J]. Surf. Coat. Technol., 2021, 424: 127617
[9] Liu J, Li Y, He P F, et al. Microstructure and properties of ZrB2-SiC continuous gradient coating prepared by high speed laser cladding [J]. Tribol. Int., 2022, 173: 107645
[10] Ren Y Q, Li L Q, Zhou Y D, et al. In situ synthesized VC reinforced Fe-based coating by using extreme high-speed laser cladding [J]. Mater. Lett., 2022, 315: 131962
[11] Ye X Y, Wang J S, Ying Q H, et al. Melting behavior of in-flight particles in ultra-high speed laser cladding [J]. J. Mater. Res. Technol., 2023, 24: 7047
[12] Yang J X, Bai B, Ke H, et al. Effect of metallurgical behavior on microstructure and properties of FeCrMoMn coatings prepared by high-speed laser cladding [J]. Opt. Laser Technol., 2021, 144: 107431
[13] Ge T, Chen L, Gu P F, et al. Microstructure and corrosion resistance of TiC/Inconel 625 composite coatings by extreme high speed laser cladding [J]. Opt. Laser Technol., 2022, 150: 107919
[14] Shen F M, Tao W, Li L Q, et al. Effect of microstructure on the corrosion resistance of coatings by extreme high speed laser cladding [J]. Appl. Surf. Sci., 2020, 517: 146085
[15] Zhou L, Ma G Z, Zhao H C, et al. Research status and prospect of extreme high-speed laser cladding technology [J]. Opt. Laser Technol., 2024, 168: 109800
[16] Ren Y Q, Chang S, Wu Y C, et al. Effect of inhomogeneous composition on the passive film of AISI 431 coating fabricated by extreme-high-speed laser cladding [J]. Surf. Coat. Technol., 2022, 440: 128496
[17] Li R X, Pang X M, Liu G, et al. Effect of oxide film on corrosion behavior of NiTi coating prepared by extreme high-speed laser cladding [J]. J. Mater. Sci., 2023, 58: 12414
[18] Gui Y, Zheng Z J, Gao Y. The bi-layer structure and the higher compactness of a passive film on nanocrystalline 304 stainless steel [J]. Thin Solid Films, 2016, 599: 64
[19] Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
[20] Zhang L, Sun J Y, Huang X H, et al. Hot temperature corrosion performance of Inconel 625 coating prepared by ultra-high speed laser cladding technique in biomass boiler [J] Clean Coal Technol., 2022, 28(6): 65
[20] 张 兰, 孙锦余, 黄新河 等. 生物质锅炉超高速激光熔覆Inconel 625涂层抗高温腐蚀性能 [J]. 洁净煤技术, 2022, 28(6): 65
[21] Sadeghimeresht E, Reddy L, Hussain T, et al. Chlorine-induced high temperature corrosion of HVAF-sprayed Ni-based alumina and chromia forming coatings [J]. Corros. Sci., 2018, 132: 170
[22] Zhang L, Liu G, Zeng D, et al. Anti-cavitation and erosion resistance of Stellite 6 coating by ultra-high speed laser cladding [J]. Surf. Technol., 2022, 51(4): 167
[22] 张 林, 刘刚, 曾 东 等. 超高速激光熔覆Stellite 6涂层的抗汽蚀及冲蚀性能 [J]. 表面技术, 2022, 51(4): 167
[23] E M, Hu H X, Guo X M, et al. Microstructure and cavitation erosion resistance of cobalt-based and nickel-based coatings [J]. Trans. Mater. Heat Treat., 2018, 39(1): 90
[23] 鄂 猛, 胡红祥, 国旭明 等. 钴基和镍基涂层的微观组织及空蚀性能 [J]. 材料热处理学报, 2018, 39(1): 90
[24] Woodford D A. Cavitation-erosion-lnduced phase transformations in alloys [J]. Metall. Trans., 1972, 3: 1137
[25] Qin C P, Zheng Y G. Cavitation erosion behavior of a laser clad Co-based alloy on 17-4PH stainless steel [J]. Corros. Sci. Prot. Technol., 2011, 23: 209
[25] 秦承鹏, 郑玉贵. 17-4PH不锈钢表面激光熔覆钴基合金涂层的空蚀行为研究 [J]. 腐蚀科学与防护技术, 2011, 23: 209
[26] Dong H, Guo P F, Han Y, et al. Enhanced corrosion resistance of high speed laser-cladded Ni/316L alloy coating by heat treatment [J]. J. Mater. Res. Technol., 2023, 24: 952
[27] Li Y Z, Shi Y. Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding [J]. Opt. Laser Technol., 2021, 134: 106632
[28] Chen L, Zhang X Z, Wu Y, et al. Effect of surface morphology and microstructure on the hot corrosion behavior of TiC/IN625 coatings prepared by extreme high-speed laser cladding [J]. Corros. Sci., 2022, 201: 110271
[29] Liu J R. Preparation and properties of CoCrFeNiTiAlx high entropy alloy coatings [D]. Xi'an: Chang'an University, 2019: 30
[29] 刘建儒. CoCrFeNiTiAlx高熵合金涂层的制备及性能研究 [D]. 西安: 长安大学, 2019: 30
[30] Wang Z G, Gao F, Tang S, et al. Effect of twin-related boundaries distribution on carbide precipitation and intergranular corrosion behavior in nuclear-grade higher carbon austenitic stainless steel [J]. Corros. Sci., 2022, 209: 110791
[31] Wang Q L, Li Y, Zhu J B, et al. Extreme high speed laser cladding 316L coating [J]. J. Phys.: Conf. Ser., 2021, 1965: 012083
[32] Afkhami S, Dabiri M, Piili H, et al. Effects of manufacturing parameters and mechanical post-processing on stainless steel 316L processed by laser powder bed fusion [J]. Mater. Sci. Eng., 2021, 802A: 140660
[33] Liu M, Jin Y, Zhang C H, et al. Density-functional theory investigation of Al pitting corrosion in electrolyte containing chloride ions [J]. Appl. Surf. Sci., 2015, 357: 2028
[34] Ding Y H, Gui W Y, Nie B X, et al. Elimination of elemental segregation by high-speed laser remelting for ultra-high-speed laser cladding Inconel 625 coatings [J]. J. Mater. Res. Technol., 2023, 24: 4118
[35] Elachouri M, Hajji M S, Kertit S, et al. Some surfactants in the series of 2-(alkyldimethylammonio) alkanol bromides as inhibitors of the corrosion of iron in acid chloride solution [J]. Corros. Sci., 1995, 37: 381
[36] Xu X, Lu H F, Su Y Y, et al. Comparing corrosion behavior of additively manufactured Cr-rich stainless steel coating between conventional and extreme high-speed laser metal deposition [J]. Corros. Sci., 2022, 195: 109976
[37] Lu J W, Zhang Y, Huo W T, et al. Electrochemical corrosion characteristics and biocompatibility of nanostructured titanium for implants [J]. Appl. Surf. Sci., 2018, 434: 63
[38] Milošev I, Žerjav G, Moreno J M C, et al. Electrochemical properties, chemical composition and thickness of passive film formed on novel Ti-20Nb-10Zr-5Ta alloy [J]. Electrochim. Acta, 2013, 99: 176
[39] Xu X, Lu H F, Qiu J X, et al. High-speed-rate direct energy deposition of Fe-based stainless steel: process optimization, microstructural features, corrosion and wear resistance [J]. J. Manuf. Process., 2022, 75: 243
[40] Liu M X, Li Z, Chang G R, et al. An investigation of the surface quality and corrosion resistance of laser remelted and extreme high-speed laser cladded Ni-based alloy coating [J]. Int. J. Electrochem. Sci., 2022, 17: 220537
[41] Wang H N, Cheng Y H, Geng R W, et al. Comparative study on microstructure and properties of Fe-based amorphous coatings prepared by conventional and high-speed laser cladding [J]. J. Alloys Compd., 2023, 952: 169842
[42] Lv J L, Luo H Y, Liang T X, et al. The effects of grain refinement and deformation on corrosion resistance of passive film formed on the surface of 304 stainless steels [J]. Mater. Res. Bull., 2015, 70: 896
[43] Chen S N. Research on wear resistance and corrosion resistance of Fe-based alloy coating deposited by ultra-high-speed laser cladding [D]. Tianjin: Tianjin University of Technology and Education, 2022
[43] 陈书楠. 超高速激光熔覆Fe基合金涂层耐磨耐蚀性研究 [D]. 天津: 天津职业技术师范大学, 2022
[44] Zhang Q, Li M Y, Wang Q, et al. Investigation of the microstructure and properties of CoCrFeNiMo high-entropy alloy coating prepared through high-speed laser cladding [J]. Coatings, 2023, 13: 1211
[45] Olsson C O A, Landolt D. Passive films on stainless steels-chemistry, structure and growth [J]. Electrochim. Acta, 2003, 48: 1093
[46] Ryan M P, Newman R C, Thompson G E. A scanning tunnelling microscopy study of structure and structural relaxation in passive oxide films on Fe-Cr alloys [J]. Philos. Mag., 1994, 70B: 241
[47] Li Z H, Chai L J, Tang Y, et al. 316L stainless steel repaired layers by weld surfacing and laser cladding on a 27SiMn steel: a comparative study of microstructures, corrosion, hardness and wear performances [J]. J. Mater. Res. Technol., 2023, 23: 2043
[48] Wonneberger R, Seyring M, Freiberg K, et al. Oxidation of stainless steel 316L-Oxide grains with pronounced inhomogeneous composition [J]. Corros. Sci., 2019, 149: 178
doi: 10.1016/j.corsci.2018.12.035
[49] Hu L W, Liu X, Chen T X, et al. Characterization of laser cladded Zr-Cu-Ni-Al in-situ metallic glass matrix composite coatings with enhanced corrosion-resistance [J]. Vacuum, 2021, 185: 109996
[50] Sun W T, Huang X H, Zhang J, et al. The roles of microstructural anisotropy in tribo-corrosion performance of one certain laser cladding Fe-based alloy [J]. Friction, 2023, 11: 1673
[51] Du J L, Xu X, Zhang H M, et al. Microstructure and wear resistance of CoCrFeNiMn coatings prepared by extreme-high-speed laser cladding [J]. Surf. Coat. Technol., 2023, 470: 129821
[52] Zhou J L, Cheng Y H, Chen Y X, et al. Composition design and preparation process of refractory high-entropy alloys: a review [J]. Int. J. Refract. Met. Hard Mater., 2022, 105: 105836
[53] Zhang Q, Wang Q, Han B, et al. Comparative studies on microstructure and properties of CoCrFeMnNi high entropy alloy coatings fabricated by high-speed laser cladding and normal laser cladding [J]. J. Alloys Compd., 2023, 947: 169517
[54] Wei R Z, Ouyang C Y, Wang R, et al. Effect of chromic acid anodization on the corrosion resistance of Fe-based alloy coatings by high-speed laser cladding [J]. Mater. Lett., 2023, 350: 134887
[55] Shi K, Du X S, Sun Y F, et al. Microstructure and properties of nickel-clad cubic boron nitride-reinforced Ni-based composite coating laser cladding on martensitic stainless steel substrates [J]. J. Therm. Spray Technol., 2023, 32: 2133
[56] Saeidi K. Stainless steels fabricated by laser melting: scaled-down structural hierarchies and microstructural heterogeneities [D]. Stockholm: Stockholm University, 2016
[57] Shahriari A, Ghaffari M, Khaksar L, et al. Corrosion resistance of 13wt.% Cr martensitic stainless steels: additively manufactured CX versus wrought Ni-containing AISI 420 [J]. Corros. Sci., 2021, 184: 109362
[58] Meng L, Zhu B, Liu X, et al. Investigation on the Ni60-WC composite coatings deposited by extreme-high-speed laser-induction hybrid cladding technology: forming characteristics, microstructure and wear behaviors [J]. Surf. Coat. Technol., 2023, 473: 130033
[59] He B, Zhang L J, Yun X, et al. Comparative study of HVOF Cr3C2-NiCr coating with different bonding layer on the interactive behavior of fatigue and corrosion [J]. Coatings, 2022, 12: 307
[60] He D G, Lin Y C, Tang Y, et al. Influences of solution cooling on microstructures, mechanical properties and hot corrosion resistance of a nickel-based superalloy [J]. Mater. Sci. Eng., 2019, 746A: 372
[61] Lou L Y, Liu K C, Jia Y J, et al. Microstructure and properties of lightweight Al0.2CrNbTiV refractory high entropy alloy coating with different dilutions deposited by high speed laser cladding [J]. Surf. Coat. Technol., 2022, 447: 128873
[62] Fakhar N, Sabbaghian M. A good combination of ductility, strength, and corrosion resistance of fine-grained ZK60 magnesium alloy produced by repeated upsetting process for biodegradable applications [J]. J. Alloys Compd., 2021, 862: 158334
[63] Li L, Chen Y X, Lu Y J, et al. Effect of heat treatment on the corrosion resistance of selective laser melted Ti6Al4V3Cu alloy [J]. J. Mater. Res. Technol., 2021, 12: 904
[64] Zheng C, Liu Z D, Liu Q B, et al. Electrochemical behavior and passive film properties of hastelloy C22 alloy, laser-cladding C22 coating, and Ti-6Al-4V alloy in sulfuric acid dew-point corrosion environment [J]. Metals, 2022, 12: 683
[65] Yang D C, Kan X F, Gao P F, et al. Influence of porosity on mechanical and corrosion properties of SLM 316L stainless steel [J]. Appl. Phys., 2022, 128A: 51
[66] He X, Song R G, Kong D J. Microstructure and corrosion behaviour of laser-cladding Al-Ni-TiC-CeO2 composite coatings on S355 offshore steel [J]. J. Alloys Compd., 2019, 770: 771
[67] Instruments Gamry. Basics of electrochemical impedance spectroscopy [R]. Gamry Instruments, 2006
[68] Xu X, Du J L, Luo K Y, et al. Microstructural features and corrosion behavior of Fe-based coatings prepared by an integrated process of extreme high-speed laser additive manufacturing [J]. Surf. Coat. Technol., 2021, 422: 127500
[69] Boissy C, Alemany-Dumont C, Normand B. EIS evaluation of steady-state characteristic of 316L stainless steel passive film grown in acidic solution [J]. Electrochem. Commun., 2013, 26: 10
[70] Gollapudi S. Grain size distribution effects on the corrosion behaviour of materials [J]. Corros. Sci., 2012, 62: 90
[71] Li T S, Liu L, Zhang B, et al. An investigation on the continuous and uniform thin membrane passive film formed on sputtered nanocrystalline stainless steel [J]. Corros. Sci., 2016, 104: 71
[72] Man C, Dong C F, Liu T T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid [J]. Appl. Surf. Sci., 2019, 467-468: 193
[73] Kong D C, Dong C F, Ni X Q, et al. The passivity of selective laser melted 316L stainless steel [J]. Appl. Surf. Sci., 2020, 504: 144495
[1] 王碧辉, 刘聚, 崔志翔, 肖博, 杨天让, 张乃强. 电泳沉积制备MnCo尖晶石涂层的高温长期稳定性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 972-978.
[2] 王玉雪, 朱澳鸿, 王力伟, 崔中雨. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[3] 翁硕, 孟超, 朱江峰, 王艾, 常馨, 康妘, 何小田, 赵礼辉. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
[4] 王汀, 高坤, 钟赛男, 张昭. 聚氨酯涂层的疏水改性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 823-834.
[5] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[6] 胡琪, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. Inconel 718及其渗铝涂层在Na2SO4 + 5%NaCl混合盐膜下的热腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[7] 徐佳新, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K452合金表面CVD渗铝涂层制备温度对其750℃硫酸盐热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.
[8] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[9] 李刚卿, 刘茜, 孙晓光, 潘景龙, 曹祥康, 董泽华. 缺陷自预警涂层的触发机制及制备策略研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 540-552.
[10] 韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[11] 李硕, 李希超, 赵经香, 戴作强, 徐斌, 孙明月, 郑莉莉. 基于涂层改性炮管寿命的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 295-302.
[12] 邓志彬, 胡枭, 刘应彦, 岳航, 张千, 汤海平, 鲁锐. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[13] 杨胜杰, 高燕, 高旭, 赵鹏, 吴伟, 于金山, 张俊喜. 双功能铝酸钙改性硅溶胶钢筋涂层[J]. 中国腐蚀与防护学报, 2024, 44(2): 405-412.
[14] 赵鹏, 郝春艳, 杨胜杰, 于金山, 武爽, 于奔, 张俊喜. 钢筋表面双功能磷酸氢钛改性的硅溶胶涂层研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 413-421.
[15] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.