|
|
油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展 |
刘久云1, 董立谨1( ), 张言1,2, 王勤英1, 刘丽1 |
1.西南石油大学新能源与材料学院 成都 610500 2.北京科技大学腐蚀与防护中心 北京 100083 |
|
Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields |
LIU Jiuyun1, DONG Lijin1( ), ZHANG Yan1,2, WANG Qinying1, LIU Li1 |
1. School of New energy and Material, Southwest Petroleum University, Chengdu 610500, China 2. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
刘久云, 董立谨, 张言, 王勤英, 刘丽. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
Jiuyun LIU,
Lijin DONG,
Yan ZHANG,
Qinying WANG,
Li LIU.
Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 863-873.
[1] |
Huang S P, Cheng R, Fan H T, et al. Quality analysis and control of key points in the manufacturing process of the subsea tree spool body [J]. Chem. Enterp. Manag., 2021, (10): 61
|
[1] |
黄施蓬, 程 锐, 范海涛 等. 水下采油树本体制造过程关键点质量分析与控制 [J]. 化工管理, 2021, (10): 61
|
[2] |
Xiao M, Wang Q Y, Zhang X S, et al. Effect of laser quenching on microstructure, corrosion and wear behavior of AISI 4130 steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 713
|
[2] |
肖 檬, 王勤英, 张兴寿 等. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制 [J]. 中国腐蚀与防护学报, 2023, 43: 713
|
[3] |
Tavares S S M, Laurya M L, Farneze H N, et al. Influence of PWHT on the sulfide stress cracking susceptibility of 9%Ni low carbon steel [J]. Eng. Fail. Anal., 2019, 104: 331
doi: 10.1016/j.engfailanal.2019.05.017
|
[4] |
Bourgeois D. Hydrogen assisted crack in dissimilar metal welds for subsea service under cathodic protection [D]. Columbus: The Ohio State University, 2015
|
[5] |
Dai T, Lippold J. Characterization of the interface of an alloy 625 overlay on steels using nanoindentation [J]. J. Mater. Eng. Perform., 2018, 27: 3411
|
[6] |
Yi H W, Hu H H, Chen C F, et al. Corrosion behavior and corrosion inhibition of dissimilar metal welds for X65 steel in CO2-containing environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 96
|
[6] |
伊红伟, 胡慧慧, 陈长风 等. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究 [J]. 中国腐蚀与防护学报, 2020, 40: 96
doi: 10.11902/1005.4537.2019.209
|
[7] |
Ding Y, Wang L W, Liu D Y, et al. Microstructure and properties of dissimilar metal welded joints of low alloy steel and duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 295
|
[7] |
丁 奕, 王力伟, 刘德运 等. 低合金钢与双相不锈钢异种金属焊接接头组织和性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 295
|
[8] |
Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
|
[8] |
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
|
[9] |
Gong K, Wu M, Zhang S. Effect of HCO 3 - on stress corrosion cracking behavior of X90 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 727
|
[9] |
宫 克, 吴 明, 张 胜. HCO 3 - 对X90管线钢应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 727
|
[10] |
Huang K, Liu M Y, Yang W, et al. Optimization design of lifting and repair scheme for fractured submarine pipeline and application [J]. Petrol. Eng. Construct., 2023, 49(1): 20
|
[10] |
黄 昆, 刘美艳, 杨 巍 等. 断裂海底管道起吊修复方案优化设计及应用 [J]. 石油工程建设, 2023, 49(1): 20
|
[11] |
Ai F F, Chen Y Q, Zhong B, et al. Stress corrosion cracking behavior of T95 oil well pipe steel in sour environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 469
|
[11] |
艾芳芳, 陈义庆, 钟 彬 等. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制 [J]. 中国腐蚀与防护学报, 2020, 40: 469
doi: 10.11902/1005.4537.2019.282
|
[12] |
Zhao X Y. The corrosion failure behavior of welded MS X70 pipeline steel in H2S environment [D]. Wuhan: Wuhan University of Science and Technology, 2018
|
[12] |
赵小宇. MS X70管线钢焊接接头在硫化氢环境下腐蚀失效行为研究[D]. 武汉: 武汉科技大学, 2018
|
[13] |
DuPont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel-Base Alloys [M]. New Jersey: John Wiley & Sons, 2011
|
[14] |
Fenske J A, Robertson I M, Ayer R, et al. Microstructure and hydrogen-induced failure mechanisms in Fe and Ni alloy weldments [J]. Metall. Mater. Trans., 2012, 43A: 3011
|
[15] |
Buntain R. Effect of Microstructure on hydrogen Assisted Cracking in Dissimilar Welds of Low Alloy Steel Pipes Joined with Nickel Based Filler Metals [M]. Ohio: The Ohio State University, 2020
|
[16] |
Fenske J A, Hukle M W, Newbury B D, et al. Hydrogen induced mechanical property behavior of dissimilar weld metal interfaces [A]. ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering [C]. Rotterdam, The Netherlands, 2011: 509
|
[17] |
Dodge M F, Dong H B, Gittos M F. Effect of post-weld heat treatment on microstructure evolution in dissimilar joints for subsea oil and gas systems [J]. Mater. Res. Innov., 2014, 18(suppl.4) : S4-907
|
[18] |
Dai T, Thodla R, Kovacs III W, et al. Effect of postweld heat treatment on the sulfide stress cracking of dissimilar welds of nickel-based alloy 625 on steels [J]. Corrosion, 2019, 75: 641
|
[19] |
Shi Z Y. Study on microstructure and SSCC of cold metal transition dissimilar metal welded joints [D]. Chengdu: Southwest Petroleum University, 2022
|
[19] |
时圳演. 冷金属过渡异种金属焊接接头组织结构及SSCC研究 [D]. 成都: 西南石油大学, 2022
|
[20] |
Dodge M F, Dong H B, Milititsky M, et al. Environment-induced cracking in weld joints in subsea oil and gas systems: Part I [A]. ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering [C]. Rio de Janeiro, Brazil, 2012: 305
|
[21] |
Dai T. Effect of postweld heat treatment on the properties of steel clad with alloy 625 for petrochemical applications [D]. Columbus: The Ohio State University, 2018
|
[22] |
Gunaraj V, Murugan N. Prediction of heat-affected zone characteristics in submerged arc welding of structural steel pipes [J]. Weld. J., 2002, 81: 45/S
|
[23] |
Deng Q S, Zhao W M, Jiang W, et al. Hydrogen embrittlement susceptibility and safety control of reheated CGHAZ in X80 welded pipeline [J]. J. Mater. Eng. Perform., 2018, 27: 1654
|
[24] |
Sadeghian M, Shamanian M, Shafyei A. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel [J]. Mater. Des., 2014, 60: 678
|
[25] |
Zhao W M, Du T H, Li X S, et al. Effects of multiple welding thermal cycles on hydrogen permeation parameters of X80 steel [J]. Corros. Sci., 2021, 192: 109797
|
[26] |
Li H, Liang J L, Feng Y L, et al. Microstructure transformation of X70 pipeline steel welding heat-affected zone [J]. Rare Met., 2014, 33: 493
|
[27] |
Varghese P, Vetrivendan E, Dash M K, et al. Weld overlay coating of Inconel 617 M on type 316 L stainless steel by cold metal transfer process [J]. Surf. Coat. Technol., 2019, 357: 1004
|
[28] |
Han Y D, Wang R Z, Jing H Y, et al. Sulphide stress cracking behaviour of the coarse-grained heat-affected zone in X100 pipeline steel under different heat inputs [J]. Int. J. Hydrogen Energy, 2020, 45: 20094
|
[29] |
Zhou C S, Chen X Y, Wang Z, et al. Effects of environmental conditions on hydrogen permeation of X52 pipeline steel exposed to high H2S-containing solutions [J]. Corros. Sci., 2014, 89: 30
|
[30] |
Berkowitz B J, Heubaum F H. The role of hydrogen in sulfide stress cracking of low alloy steels [J]. Corrosion, 1984, 40: 240
|
[31] |
Chang W S, Yoon B H, Kweon Y G. Characteristics of sulfide stress corrosion cracking of high strength pipeline steel weld [J]. Corros. Sci. Technol., 2004, 3(2): 81
|
[32] |
Zhou C S, Huang Q Y, Guo Q, et al. Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steel and Inconel 625 alloy [J]. Corros. Sci., 2016, 110: 242
|
[33] |
Kacher J, Robertson I M. Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel [J]. Acta Mater., 2012, 60: 6657
|
[34] |
Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the character of dislocations in high-purity aluminum [J]. Acta Mater., 1999, 47: 2991
|
[35] |
Harris Z D, Dubas E M, Schrock D J, et al. Assessing the fatigue crack growth behavior of highly sensitized AA5456-H116 under cathodic polarization [J]. Mater. Sci. Eng., 2020, 792A: 139792
|
[36] |
Jeon J, Ahmed R, Elgaddafi R, et al. Hydrogen embrittlement of high-strength API carbon steels in H2S and CO2 containing environments [J]. J. Nat. Gas Sci. Eng., 2022, 104: 104676
|
[37] |
Smith S N. Discussion of the history and relevance of the CO2/H2S Ratio [A]. NACE Corrosion [C]. Houston, Texas, 2011
|
[38] |
Haldorsen L M, Rørvik G, Dodge M, et al. Recent experiences with cracking of load bearing dissimilar metal welds on subsea production systems [A]. ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering [C]. Trondheim, Norway, 2017: V004T03A029
|
[39] |
Dodge M, Haldorsen L M, Gittos M, et al. Effect of temperature on resistance to hydrogen embrittlement of dissimilar metal welds subjected to SENB and SENT testing [A]. ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering [C]. Hamburg, Germany, 2022: V003T03A008
|
[40] |
Laureys A, Depraetere R, Cauwels M, et al. Use of existing steel pipeline infrastructure for gaseous hydrogen storage and transport: A review of factors affecting hydrogen induced degradation [J]. J. Nat. Gas Sci. Eng., 2022, 101: 104534
|
[41] |
Xing X, Zhou J Y, Zhang S X, et al. Quantification of temperature dependence of hydrogen embrittlement in pipeline steel [J]. Materials (Basel), 2019, 12: 585
|
[42] |
Shi X B, Yan W, Wang W, et al. Effect of microstructure on hydrogen induced cracking behavior of a high deformability pipeline steel [J]. J. Iron Steel Res. Int., 2015, 22: 937
|
[43] |
Pérez Escobar D, Depover T, Duprez L, et al. Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel [J]. Acta Mater., 2012, 60: 2593
|
[44] |
Dong L J, Shi Z Y, Zhang Y, et al. Microstructure and sulfide stress corrosion cracking of the Inconel 625/X80 weld overlay fabricated by cold metal transfer process [J]. Int. J. Hydrogen Energy, 2022, 47: 29113
|
[45] |
Beaugrand V C M, Smith L S, Gittos M F. Subsea dissimilar joints: failure mechanisms and opportunities for mitigation [A]. NACE Corrosion [C]. Atlanta, Georgia, USA, 2009
|
[46] |
Dodge M F. The effect of heat treatment on the embrittlement of dissimilar welded joints [D]. Leicester: University of Leicester, 2014
|
[47] |
Zhang Y. Study on sulfide stress corrosion cracking of nickel base 625/X80 bimetal composite pipe welding [D]. Chengdu: Southwest Petroleum University, 2023
|
[47] |
张 言. 镍基625/X80双金属复合管焊接熔合界面硫化物应力腐蚀开裂研究 [D]. 成都: 西南石油大学, 2023
|
[48] |
Li J X, Li Y T, Han Y D, et al. Study on SSCC behavior of pipeline steel welded joints with nickel-based alloy weld [J]. Weld. Technol., 2015, 44(11): 4
|
[48] |
李杰祥, 李云涛, 韩永典 等. 焊缝为镍基合金的管线钢焊接接头SSCC行为研究 [J]. 焊接技术, 2015, 44(11): 4
|
[49] |
Zhao Y F, Wang J L, Zuo Y, et al. Research development of corrosion of steels in CO2/H2S-containing media in oil & gas fields [J]. Corros. Prot. Petrochem. Ind., 2010, 27(1): 1
|
[49] |
赵永峰, 王吉连, 左 禹 等. 在含CO2/H2S介质中油气田用钢的腐蚀研究进展 [J]. 石油化工腐蚀与防护, 2010, 27(1): 1
|
[50] |
Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel [J]. Corros. Sci., 2008, 50: 1865
|
[51] |
Ghosh G, Rostron P, Garg R, et al. Hydrogen induced cracking of pipeline and pressure vessel steels: A review [J]. Eng. Fract. Mech., 2018, 199: 609
|
[52] |
Zhao X Y, Huang F, Gan L J, et al. Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of the welded MS X70 pipeline steel in H2S environment [J]. Acta Metall. Sin., 2017, 53: 1579
|
[52] |
赵小宇, 黄 峰, 甘丽君 等. MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究 [J]. 金属学报, 2017, 53: 1579
doi: 10.11900/0412.1961.2017.00101
|
[53] |
Shim D H, Lee T, Lee J, et al. Increased resistance to hydrogen embrittlement in high-strength steels composed of granular bainite [J]. Mater. Sci. Eng., 2017, 700A: 473
|
[54] |
Shi X B, Yan W, Zhang C G, et al. Effect of expanding ratio on strain capacity of X70 grade high deformability pipeline steel pipe [J]. Heat Treat. Met., 2023, 48(3): 71
doi: 10.13251/j.issn.0254-6051.2023.03.012
|
[54] |
史显波, 严 伟, 章传国 等. 扩径率对X70级大变形管线钢管变形能力的影响 [J]. 金属热处理, 2023, 48(3): 71
doi: 10.13251/j.issn.0254-6051.2023.03.012
|
[55] |
Arafin M A, Szpunar J A. A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies [J]. Corros. Sci., 2009, 51: 119
|
[56] |
Xu K, Qiao G Y, Wang J S, et al. Research on the fatigue properties of sub‐heat‐affected zones in X80 pipe [J]. Fatigue Fract. Eng. Mater. Struct., 2020, 43: 2915
|
[57] |
Gao Z W, Gong B M, Xu Q J, et al. High cycle fatigue behaviors of API X65 pipeline steel welded joints in air and H2S solution environment [J]. Int. J. Hydrogen Energy, 2021, 46: 10423
|
[58] |
Nelson T W, Lippold J C, Mills M J. Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar weld metals, Part Ⅰ-Nucleation and growth [J]. Weld. J., 1999, 78: 329-s
|
[59] |
Hou J, Peng Q J, Takeda Y, et al. Microstructure and stress corrosion cracking of the fusion boundary region in an alloy 182-A533B low alloy steel dissimilar weld joint [J]. Corros. Sci., 2010, 52: 3949
|
[60] |
Zhang T M, Wang Y, Zhao W M, et al. Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure coal gas environment [J]. Acta Metall. Sin., 2015, 51: 1101
doi: 10.11900/0412.1961.2015.00039
|
[60] |
张体明, 王 勇, 赵卫民 等. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究 [J]. 金属学报, 2015, 51: 1101
|
[61] |
Zhang T M, Zhao W M, Deng Q S, et al. Effect of microstructure inhomogeneity on hydrogen embrittlement susceptibility of X80 welding HAZ under pressurized gaseous hydrogen [J]. Int. J. Hydrogen Energy, 2017, 42: 25102
|
[62] |
De Knijf D, Petrov R, Föjer C, et al. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel [J]. Mater. Sci. Eng., 2014, 615A: 107
|
[63] |
Cao R H, Xu L N, Jiang B L, et al. Coupling effect of microstructure and hydrogen absorbed during service on pitting corrosion of 321 austenitic stainless steel weld joints [J]. Corros. Sci., 2020, 164: 108339
|
[64] |
Zhang Y, Dong L J, Li H, et al. Insights into the role of partially mixed zones in sulfide stress corrosion cracking of the inconel 625/X80 weld overlay [J]. Int. J. Hydrogen Energy, 2023, 48: 28583
|
[65] |
Luo Y, Gu W B, Peng W, et al. A study on microstructure, residual stresses and stress corrosion cracking of repair welding on 304 stainless steel: Part I-effects of heat input [J]. Materials, 2020, 13: 2416
|
[66] |
Wang X T, Liu M, Zhou G Y, et al. Effects of chromium and tungsten on sulfide stress cracking in high strength low alloy 125 ksi grade casing steel [J]. Corros. Sci., 2019, 160: 108163
|
[67] |
Lee G Y, Park Y S, Bae D H. Assessing the effects of the welding processes on the environmental strength of an multi-pass welded A106 Gr B steel pipe [A]. 2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE) [C]. Chengdu, China, 2013
|
[68] |
Dodge M F, Dong H B, Milititsky M, et al. Environment-induced cracking in weld joints in subsea oil and gas systems: Part II [A]. ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering [C]. Nantes, France, 2013: V003T03A011
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|