中国腐蚀与防护学报, 2024, 44(3): 807-814 DOI: 10.11902/1005.4537.2023.233

研究报告

生物质碳点对Q235钢的缓蚀性能研究

龙武剑1,2, 唐杰1, 罗启灵1,2, 丘章鸿3, 王海龙,3

1.深圳大学土木与交通工程学院 深圳 518060

2.广东省滨海土木工程耐久性重点实验室 深圳 518060

3.广东裕恒工程检测技术有限责任公司 广州 511356

Corrosion Inhibition Performance of Biomass-derived Carbon Dots on Q235 Steel

LONG Wujian1,2, TANG Jie1, LUO Qiling1,2, QIU Zhanghong3, WANG Hailong,3

1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

2. Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen 518060, China

3. Guangdong Yuheng Engineering Testing Technology Co., Ltd., Guangzhou 511356, China

通讯作者: 王海龙,E-mail:168680212@qq.com,研究方向为腐蚀与防护技术

收稿日期: 2023-07-27   修回日期: 2023-09-06  

基金资助: 国家自然科学基金-山东联合基金.  U2006223
广东省重点领域研发计划.  2019B111107003
广东省基础与应用基础研究基金.  2023A1515012136

Corresponding authors: WANG Hailong, E-mail:168680212@qq.com

Received: 2023-07-27   Revised: 2023-09-06  

Fund supported: National Natural Science Foundation of China-Shandong Joint Fund.  U2006223
Guangdong Key Areas R & D Project.  2019B111107003
Guangdong Foundation and Applied Basic Research Fund Project.  2023A1515012136

作者简介 About authors

龙武剑,男,1977年生,博士,教授

摘要

金属腐蚀威胁金属设施的安全性和可靠性,也加剧了环境污染和经济损失问题。然而,使用可持续、可再生且经济的原材料制备绿色缓蚀剂现阶段仍是有挑战性难题。本文以荔枝叶为原料制备了生物质基碳点(CDs),并采用失重法、电化学阻抗谱和动电位极化曲线系统研究了其在1 mol/L HCl中对Q235钢的缓蚀性能。所获得的生物质基CDs具有丰富的含氧和含氮官能团,这些官能团使CDs在1 mol/L HCl溶液中保持稳定,具有长期有效的缓蚀性能。

关键词: 碳点 ; 缓蚀剂 ; 吸附 ; 电化学实验

Abstract

The corrosion of metallic materials poses a threat to the safety and reliability of metallic facility and equipment, as well as exacerbating environmental pollution and economic losses. However, the use of sustainable, renewable and economical raw materials to prepare green corrosion inhibitors is still a challenging issue at this stage. Herein, biomass-based carbon dots (CDs) were prepared with lychee leaves as raw material, and their corrosion inhibition performance on Q235 steel in 1 mol/L HCl was assessed by means of mass loss measurement, electrochemical impedance spectroscope, and potentiodynamic polarization measurement. Results indicate that the obtained biomass-derived CDs contain numerous oxygen and nitrogen functional groups, which enable them to remain stable in 1 mol/L HCl solution and exhibit long-term stable corrosion inhibition performance.

Keywords: carbon dots ; corrosion inhibitor ; absorption ; electrochemical measurements

PDF (6434KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

龙武剑, 唐杰, 罗启灵, 丘章鸿, 王海龙. 生物质碳点对Q235钢的缓蚀性能研究. 中国腐蚀与防护学报[J], 2024, 44(3): 807-814 DOI:10.11902/1005.4537.2023.233

LONG Wujian, TANG Jie, LUO Qiling, QIU Zhanghong, WANG Hailong. Corrosion Inhibition Performance of Biomass-derived Carbon Dots on Q235 Steel. Journal of Chinese Society for Corrosion and Protection[J], 2024, 44(3): 807-814 DOI:10.11902/1005.4537.2023.233

金属腐蚀是人类发展最为关注的问题之一,不仅严重威胁金属设施和设备的安全和可靠性,还加剧了环境污染和经济损失[1]。现阶段多种方法应用于金属防腐,其中,缓蚀剂被认为是最有效降低金属腐蚀率的方法之一。然而,传统的无机缓蚀剂如亚硝酸盐、重铬酸盐等具有毒性和致癌性,危害环境和人类健康。近年来,有机缓蚀剂如氨基酸[2]、离子液体[3]和植物提取物[4]备受研究人员的关注,但它们仍存在着诸如制备流程复杂、成本高、需使用有毒萃取剂等问题。因此,迫切需要开发一种简单、环保、高效的绿色缓蚀剂。

碳点(CDs)是在2004年被发现的一种新型零维碳基荧光纳米材料[5]。因其易于合成和获取的前体、可调节的表面基团、优异的分散性以及环境友好等特性,已被作为新型绿色缓蚀剂使用,并表现出了显著的缓蚀性能[6,7]。研究人员已采用一系列有机小分子作为原材料制备CDs,证实了其对包括碳钢[8-10]、Cu[11-14]和Al[15]在内的各种金属,在酸溶液和中性盐溶液中具备超过80%的缓蚀效率。因此,CDs有望作为新一代绿色缓蚀剂应用。然而,在碳点的制备过程中,通常需要使用昂贵且有害的原料[16, 17]。因此,使用低成本、可再生的材料来制备高效的绿色碳点缓蚀剂是非常必要的。

生物质具有易获取、低成本、环保、来源丰富和可再生等优点,可作为制备绿色CDs的新方向[18]。目前已有多项研究成功地从淀粉[19]、丹参[20]、樟叶[21]和杨树[22]等生物质中制备了CDs。然而,将生物质CDs用于防腐领域的文献报道较少。因此,研究生物质CDs的绿色制备及其在防腐领域的应用具有广阔前景。

本研究采用绿色、简便的水热法从可再生的荔枝叶中制备了生物质CDs,并详细研究了其在HCl溶液中的腐蚀防护性能。研究表明,所制备的CDs含有丰富的含氧和含氮官能团,在HCl溶液中呈现出高达97.70%的缓蚀率。此外,我们通过吸附等温线和腐蚀形貌分析,揭示了其缓蚀机理。本研究证明了生物质基CDs在腐蚀防护中具有良好的缓蚀性能,为推动绿色高效缓蚀剂的开发提供了新的思路。

1 实验方法

碳钢是工程和日常生活应用中最广泛使用的金属之一,具有低成本、高强度和耐磨等优点。本文采用Q235钢,其含量(质量分数,%)为:C 0.18,Si 0.3,Mn 0.6,Cr 0.25,P 0.045,S 0.045,Cu 0.25,Ni 0.25,Fe余量。实验前,使用400至2000级不同粒度的砂纸依次打磨Q235钢试样,然后用去离子水洗涤和乙醇脱脂,最后在冷气流下干燥。使用AR级别36%~38%的盐酸稀释至1 mol/L浓度。荔枝叶从深圳大学校园收集,并在洗净、干燥和粉碎后使用。

将2 g干荔枝叶和100 mL去离子水密封在150 mL聚四氟乙烯内衬的不锈钢高压釜中,加热到200℃处理12 h。自然冷却至室温后,将棕黄色混合物在10000转下离心10 min,然后通过0.2 μm的滤膜去除残留的树叶大颗粒。随后,通过旋转蒸发和真空冷冻干燥,得到棕黑色的固态荔枝CDs粉末,产率约为5%。采用透射电子显微镜(TEM,FEI Talos F200S)观察所制备CDs形貌。采用Fourier变换红外光谱仪(FTIR,Thermo Scientific Nicolet6700)对CDs基团进行观测。

将15 mm × 15 mm × 3 mm的Q235钢试样浸泡在不同浓度的CDs中的1 mol/L盐酸溶液中96 h,每24 h冲洗干燥后迅速称重3次。测试前,所有试样均通过精密电子天平称重3次,精度为0.0001 g。失重实验在室温下进行。根据公式计算腐蚀速率和缓蚀效率(η):

vcorr=WAt
η=vcorr-vcorr'vcorr×100%

式中,ΔW为样品3次称重的平均失重,g;A为样品的比表面积,cm2t为浸泡时间,h;vcorr为不加CDs溶液的腐蚀速率,mg·cm-2·h-1vcorr'为不同浓度CDs溶液的腐蚀速率,mg·cm-2·h-1

将CDs直接加入1 mol/L HCl中,分别形成CDs浓度为25、50、100和200 mg/L的HCl溶液。采用三电极系统(暴露面积为1 cm²的Q235钢作为工作电极(WE)、饱和甘汞电极作为参比电极(RE)、Pt片作为对电极(CE)),在PARSTAT 4000 + 电化学工作站上进行电化学阻抗谱(EIS)和动电位极化(PDP)测试。所有测试均在室温下完成。测试前,开路电位(OCP)应达到稳定状态。EIS测量范围为105~10-2 Hz,振幅为10 mV;PDP扫描电位范围为± 250 mV,速率为1 mV/s。所有电化学实验均进行3次以确保重现性。EIS数据采用ZSimDemo 3.30软件拟合和分析。

取出试样后,进行清洗和干燥,并存放于真空烘箱中进行形态观察。采用Zeiss Sigma 300型扫描电子显微镜(SEM)和自带的能谱仪(EDS)分析试样表面的二维形态和元素组成。通过FTIR获取试样表面的化学状态。

2 结果与讨论

2.1 CDs的表征分析

图1所示,通过TEM直接观察了所制备CDs的粒径分布和微观结构。随机测量100多个颗粒后得出,大多数CDs的粒径分布在2.56~6.45 nm之间,平均为4.24 nm,呈现出良好的分散性和准球形形貌。高分辨TEM图像显示(插图),大部分CDs具有晶体结构和明显的晶格间隙,其晶格间距为0.21 nm,与石墨烯(100)平面的晶格间距相符[22]。观察结果证明了荔枝叶的主要成分碳水化合物在高温高压下经历了脱水缩合、聚合和碳化过程,形成了以sp2 C结构为核心的CDs。

图1

图1   CDs的TEM图

Fig.1   TEM image of CDs


通过FTIR光谱分析,揭示了合成的CDs的表面化学状态和元素组成的详尽信息。FTIR光谱中3333、1721、1444和1038 cm-1处的特征峰(图2)证实了O-H/N-H键、C=O键、C-N键和C-O键的存在[18,21]。众多含氧和含氮的官能团赋予CDs优异的水溶性和良好的分散稳定性,为其作为基于水的缓蚀剂的应用奠定了基础。此外,2920和2853 cm-1处的峰归因于CDs的C-H拉伸振动,而CDs的亲水性较好意味着C-H的比例低于含氧和含氮的官能团的比例。1612 cm-1处的峰对应苯环中C=C的拉伸振动[23],证明了CDs的sp2 C结构,与TEM结果吻合。

图2

图2   CDs的FTIR谱

Fig.2   FTIR spectrum of CDs


根据图3插图显示,在可见光照射下,1 mg/mL CDs水溶液呈微黄色,并在365 nm紫外光激发下发出强烈的蓝色荧光。UV-vis吸收光谱(图3a)显示CDs具有两个吸收峰,分别为275和320 nm,分别归因于芳香族sp2 C的π-π*跃迁和含氧和含氮官能团的n-π*跃迁[24]。如荧光光谱所示(图3b),CDs表现出激发依赖的荧光行为,其最大激发/发射波长为360/436 nm。

图3

图3   1 mg/mL的CDs水溶液UV-Vis光谱以及用不同激发波长测试得到的PL光谱

Fig.3   UV-Vis absorption spectrum (a) and PL spectra with different excitation wavelengths (b) of 1 mg/mL CDs aqueous solution. The inset photo-graphs shown in Fig.3a are 1 mg/mL CDs aque-ous solution taken under sunlight and a 365 nm UV light


2.2 CDs的缓蚀效果研究

为了研究CDs作为Q235钢在1 mol/L HCl中缓蚀剂的效果,进行了失重实验、EIS和PDP测量。图4描述了不同CDs浓度下,在室温下不同浸泡时间内Q235钢在1 mol/L HCl中的腐蚀速率和CDs的缓蚀效率(η)情况。与空白溶液相比,加入CDs后,无论CDs的浓度或浸泡时间如何,腐蚀速率都大大降低。随着CDs浓度的增加,腐蚀速率呈显著下降趋势(图4a)。当CDs的含量为200 mg/L时,在24 h浸泡后,Q235钢的腐蚀速率相对于空白溶液下降了86.06%(从4.59 mg·cm-2·h-1降至0.64 mg·cm-2·h-1)。更重要的是,随着浸泡时间的延长(图4b),CDs的η从86.06%升至92.74%,表明CDs作为长期缓蚀剂具有出色的潜力。失重实验的所有结论均证明了CDs的高效缓蚀性能和长期缓蚀潜力。

图4

图4   Q235钢在含不同浓度CDs的1 mol/L HCl溶液中浸泡不同时间的腐蚀速率和缓蚀率随时间的变化曲线

Fig.4   Variations of corrosion rate (a) and inhibition efficiency (b) vs immersion time of Q235 steel in 1 mol/L HCl solution with different contents of CDs


图5a所示,在最低频率(0.01 Hz)处的阻抗模量与碳钢电极的腐蚀速率成反比,随着CDs浓度的增加呈现上升趋势,表明其对Q235钢表面的防腐性能逐渐增强[25,26]。值得注意的是,在200 mg/L CDs的HCl溶液中,|Z|0.01 Hz值达到353.22 Ω·cm2,比空白溶液高出95.51%。无论CDs浓度如何,所有Bode相位角曲线均呈现出单个峰值,对应一个时间常数。但是,随着CDs含量的增加,峰值逐渐上移,揭示了碳钢/溶液界面的电容响应增强,这归因于CDs的吸附[27]。正如图5b所示,典型Nyquist图中出现了抑制性的电容半圆,其直径随着CDs的加入而显著增大,表明CDs能够在低至25 mg/L的浓度下在碳钢表面形成有效的保护膜[14],而CDs浓度的增加则提高了保护膜的致密性。此外,所有电容半圆形状均相似,表明CDs未能改变Q235钢电极的电化学特性[28],与Bode图的结果相一致。

图5

图5   Q235钢在含不同浓度CDs的1 mol/L HCl中进行电化学测试结果

Fig.5   Bode (a) and Nyquist (b) plots of Q235 steel in 1 mol/L HCl solution and its equivalent circuit shown in Fig.5b


采用等效电路模型(图5b)可以更好地理解EIS结果,在表1中列出相关参数值。其中,Rs是工作电极和参比电极之间的溶液电阻。Rp对应于极化电阻,可用于计算腐蚀缓蚀效率(γ)[29]

γ=(RpRp0)/Rp×100%

其中,RpRp0分别表示有和没有腐蚀缓蚀剂的极化电阻。CPEdl是常相位元素,表示由于不均匀电极的非理想电容行为而产生的双电层电容,而不是理想电容[30]。CPEdl与腐蚀反应区域有关[31],通过以下方程计算:

CPEdl=Y0(2πfmax)n1

其中,Y0是CPEdl的幅度,fmax表示阻抗虚部最大值的频率,参数n提供有关工作电极表面不均匀程度的信息,当n = 1时,CPE等于理想电容[32]。如表1所示,加入CDs后,Rp值增加,同时CPEdl值减小,表明CDs作为有效的腐蚀缓蚀剂应吸附于Q235钢电极表面,减小腐蚀区域并提供显著的保护作用。随着CDs浓度的增加,γ值不断上升,在200 mg/L CDs溶液中达到最大值95.51%,意味着CDs能够为1 mol/L HCl中的Q235钢提供有效的保护。

表1   Q235钢浸泡在不同溶液中的等效电路拟合参数

Table 1  Fitting parameters of Q235 steel in various solutions

C

mg·L-1

Rs

Ω·cm2

Rp

Ω·cm2

CPEdl

μF·cm-2

χγ
Blank1.6515.83193.8500.04042-
251.51339.6976.8920.0615959.41%
501.79694.8171.1870.0485783.30%
1001.912161.3741.8350.063490.19%
2005.451353.2237.1270.0069795.51%

新窗口打开| 下载CSV


图6显示了Q235钢在不同浓度CDs的HCl溶液中的PDP曲线,并用经典外推法计算了PDP曲线的相关参数,其结果见表2,其中EcorrIcorrβcβa和IE分别为腐蚀电位、腐蚀电流密度、阴极斜率、阳极斜率和缓蚀效率。IE值通过以下公式获得:

图6

图6   Q235钢在含不同浓度CDs的1 mol/L HCl中的PDP曲线

Fig.6   PDP curves of Q235 steel in 1 mol/L HCl solution with different concentrations of CDs


IE=(I0corr-Icorr)/I0corr×100%

其中,I0corrIcorr分别为无和有缓蚀剂的腐蚀电流密度。随着CDs浓度的增加,βaβc均减小,同时阴极和阳极区域的Icorr均向更低值移动,说明对阴极反应和阳极反应都有抑制作用,表明CDs是作为一种混合型缓蚀剂发挥作用。同时,Icorr值随着CDs浓度的增加呈现出下降趋,且IE值呈上升趋势。当CDs含量为200 mg/L时,IE值达到最大值97.70%。上述结果与失重实验和EIS分析结果一致。

表2   PDP测试所得电化学参数

Table 2  Electrochemical parameters obtained from PDP

C

mg·L-1

Ecorr

mV/SCE

Icorr

μA·cm-2

-βc

mV·dec-1

βa

mV·dec-1

IE
Blank-468891.10168179-
25-479254.2114715271.47%
50-491154.2112413082.69%
100-49431.2810612996.49%
200-49620.4710411197.70%

新窗口打开| 下载CSV


失重实验、EIS和PDP测试结果表明,生物质基CDs具有高效的缓蚀性能和潜在的长期缓蚀潜力,这可能归因于CDs吸附在Q235钢表面形成的有效保护膜。相应缓蚀机理将在下文中进一步分析。

2.3 吸附等温分析

图7所示的吸附等温线可以提供关于CDs和Q235钢表面相互作用的关键信息,以探究其缓蚀机理。根据以下方程:

θ/(1θ)=KadsCinh

其中,θ表2所示IE对应的表面覆盖度,KadsCinh分别为吸附平衡常数和缓蚀剂浓度,拟合结果的线性相关值R2为0.9989。结果表明,CDs缓蚀剂的吸附过程符合Langmuir吸附等温线。此外,通过以下方程确定吸附自由能(ΔGads0),用于评价缓蚀剂的吸附类型:

ΔGads0=RTln(1000Kads)

其中,TR分别为热力学温度298 K和摩尔气体常数8.314 J·mol-1·K-1。如果ΔGads0值为-20 kJ·mol-1或更正,则缓蚀剂分子与金属表面会发生静电相互作用,称为物理吸附。而当ΔGads0值为负-40 kJ·mol-1或更负时,由于电子从缓蚀剂分子转移或共享到金属表面,会产生配位共价键,称为化学吸附[32,33]。CDs的ΔGads0值为-27.43 kJ·mol-1,说明CDs与Q235钢表面的相互作用包括化学吸附和物理吸附。

图7

图7   依据电化学测试数据计算所得的Langmuir吸附曲线

Fig.7   Langmuir adsorption isotherm of CDs on the surface of Q235 steel


2.4 腐蚀形貌分析

为了更好地了解CDs的缓蚀机理,采用SEM、EDS和FTIR对Q235钢在1 mol/L HCl中浸泡96 h时的腐蚀形貌进行了综合分析。如图8所示,原始Q235钢表面非常光滑,有少量微弱的划痕和可忽略的凹坑,而在1 mol/L HCl中浸泡96 h后,Q235钢表面表现出严重的损伤,表面有明显的大坑和小裂纹。加入200 mg/L的CDs后,腐蚀明显减轻,小裂纹和大坑消失,这可能是由于CDs在钢表面形成了吸附膜。为了验证这一假设,用EDS和FTIR分别测量了相应的表面元素组成和化学状态[34]。从图8的EDS能谱中看出,在钢的表面检测出多种元素。其中,抛光后的Q235钢各元素所占的质量比例分别为C (26.29%)、O (3.82%)和Fe (69.77%)。而在1  mol/L HCl溶液中,Q235钢表面的能谱和元素含量变化较大。由于Fe的溶解,Fe峰强度降低(42.81%)。此外,由于Q235钢表面的氧化,O的强度(39.89%)增加。然而,当200 mg/L CDs存在时,Q235钢在1  mol/L HCl溶液中的EDS谱与抛光后的不同,其Fe含量的下降幅度比1  mol/L HCl溶液中的样品稍小,为55.61%。这些数据表明,CDs的加入明显延缓了Q235钢的腐蚀[8,16]。此外,如图9所示,CDs粉末和暴露在含有200 mg/L CDs的1 mol/L HCl中的Q235钢表面具有多个相同的特征峰,如C-H,O-H/N-H,C-N,C=O和C-O。与此同时,这些峰的强度有很大的变化,并且它们的峰值有所偏移,CDs的C=C峰无法在Q235钢表面上观察到,这归因于CDs与Q235钢表面形成了配位键[35],这进一步提供了CDs吸附在Q235钢表面的有力证据。

图8

图8   Q235钢的SEM和EDS图像

Fig.8   SEM (a-c) and EDS (d-f) images of Q235 steel samples: (a, d) original state, (b, e) immersion in 1 mol/L HCl without CDs for 96 h, (c, f) immersion in 1 mol/L HCl with 200 mg/L CDs for 96 h


图9

图9   浸泡96 h前后Q235钢表面及CDs材料的FTIR谱

Fig.9   FTIR spectra of CDs as well as Q235 steel surface before and after 96 h immersion in 1 mol/L HCl with 200 mg/L CDs


2.5 CDs的缓蚀机理

结合上述电化学实验、吸附等温线和腐蚀形貌的分析,本文对CDs的缓蚀机理给出了一个合理的解释,来说明CDs与Q235钢表面的相互作用。Q235钢在不含CDs的HCl溶液中的主要反应为:阳极反应为Fe-2e- = Fe2+,阴极反应为2H+ + 2e- =H2↑,通过引起钢的快速溶解和H+还原,从而对钢表面产生严重的腐蚀。同时,钢表面带正电荷,因此水合Cl-易于通过静电相互作用附着在钢表面上[36]。而在掺入CDs后,它们立即在HCl溶液中质子化;其次,所附的水合Cl-起到相互连接桥的作用,以促进质子化CDs在金属表面上通过静电相互作用的物理吸附,从而与H+形成竞争关系[37]。吸附等温线研究表明,除物理吸附外,化学吸附也起着重要作用。由FTIR(图2)所表征的CDs含有丰富的含氧和含氮官能团,可以通过O与N原子的孤对电子与Fe原子的未占据3d轨道之间形成配位键化学吸附在钢表面。最终,通过电化学表征、EDS (图8)和FTIR(图9)证实了CDs成功地在钢表面形成保护膜。在保护膜的作用下,可有效避免腐蚀介质与金属的直接接触,从而同时抑制阴极析氢过程和阳极金属溶解过程。此外,随着CDs含量的增加,CDs可以更有效地吸附在钢片表面,形成更致密的保护膜,进一步减轻HCl的侵蚀。综上所述,CDs在钢表面形成的保护膜,主要依赖于化学和物理吸附机制,这一过程是其发挥缓蚀作用的主要原因。

3 结论

(1) 以荔枝叶为原料,采用绿色、简便、一步水热法制备CDs,避免了有害元素的使用和有毒气体的产生。所制备的以sp2 C为核,表面含O、N官能团的环保型CDs在HCl溶液中具有良好的长期分散稳定性,为其作为酸性缓蚀剂的应用奠定了坚实的基础。

(2) 当CDs浓度为200 mg/L时,其缓蚀率高达97.70%,是一种有效的碳钢缓蚀剂。

(3) 本文研究结果有助于提高人们对生物质基CDs优异的缓蚀性能的认识,并为制备绿色高效的缓蚀剂开辟了新的途径。

参考文献

Yang D P, Ye Y W, Su Y, et al.

Functionalization of citric acid-based carbon dots by imidazole toward novel green corrosion inhibitor for carbon steel

[J]. J. Clean Prod., 2019, 229: 180

DOI      URL     [本文引用: 1]

Zhang Q H, Hou B S, Li Y Y, et al.

Two amino acid derivatives as high efficient green inhibitors for the corrosion of carbon steel in CO2-saturated formation water

[J]. Corros. Sci., 2021, 189: 109596

DOI      URL     [本文引用: 1]

Li X, Wang X Y, Nawaz H, et al.

The choice of ionic liquid ions to mitigate corrosion impacts: the influence of superbase cations and electron-donating carboxylate anions

[J]. Green Chem., 2022, 24: 2114

DOI      URL     [本文引用: 1]

[DBUH][CH3CH2OCH2COO] exhibited excellent corrosion inhibition for 304SS compared to imidazolium-based ILs due to the barrier effect produced by carboxylate anions containing electron-donating groups and superbase cations with a large ring.

Baran E, Cakir A, Yazici B.

Inhibitory effect of Gentiana olivieri extracts on the corrosion of mild steel in 0.5 M HCl: Electrochemical and phytochemical evaluation

[J]. Arab. J. Chem., 2019, 12(8): 4303

DOI      URL     [本文引用: 1]

He C, Xu P, Zhang X H, et al.

The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective

[J]. Carbon, 2022, 186: 91

DOI      URL     [本文引用: 1]

Long W J, Li X Q, Xu P, et al.

Facile and scalable preparation of carbon dots with Schiff base structures toward an efficient corrosion inhibitor

[J]. Diam. Relat. Mater., 2022, 130: 109401

DOI      URL     [本文引用: 1]

Zhu M Y, Guo L, He Z Y, et al.

Insights into the newly synthesized N-doped carbon dots for Q235 steel corrosion retardation in acidizing media: A detailed multidimensional study

[J]. J. Colloid Interface Sci., 2022, 608: 2039

DOI      URL     [本文引用: 1]

Cui M J, Ren S M, Zhao H C, et al.

Novel nitrogen doped carbon dots for corrosion inhibition of carbon steel in 1 M HCl solution

[J]. Appl. Surf. Sci., 2018, 443: 145

DOI      URL     [本文引用: 2]

Guo L, Zhu M Y, He Z Y, et al.

One-pot hydrothermal synthesized nitrogen and sulfur codoped carbon dots for acid corrosion inhibition of Q235 steel

[J]. Langmuir, 2022, 38(13): 3984

DOI      URL    

Xu Q J, Ge K, Zhang S T, et al.

Understanding the adsorption and inhibitive properties of Nitrogen-Doped Carbon Dots for copper in 0.5 M H2SO4 solution

[J]. J. Taiwan Inst. Chem. Engineers, 2021, 125: 23

DOI      URL     [本文引用: 1]

Zhang Y, Tan B C, Zhang X, et al.

Synthesized carbon dots with high N and S content as excellent corrosion inhibitors for copper in sulfuric acid solution

[J]. J. Mol. Liq., 2021, 338: 116702

DOI      URL     [本文引用: 1]

Zhang Y, Zhang S T, Tan B C, et al.

Solvothermal synthesis of functionalized carbon dots from amino acid as an eco-friendly corrosion inhibitor for copper in sulfuric acid solution

[J]. J. Colloid Interface Sci., 2021, 604: 1

DOI      URL    

Qiang Y J, Zhang S T, Zhao H C, et al.

Enhanced anticorrosion performance of copper by novel N-doped carbon dots

[J]. Corros. Sci., 2019, 161: 108193

DOI      URL    

Cen H Y, Chen Z Y, Guo X P.

Corrosion inhibition performance and mechanism of carbon dots as corrosion inhibitors

[J]. Surf. Tech., 2020, 49(11): 13

[本文引用: 2]

岑宏宇, 陈振宇, 郭兴蓬.

碳量子点缓蚀剂的缓蚀行为与机理研究

[J]. 表面技术, 2020, 49(11): 13

[本文引用: 2]

Cen H Y, Zhang X, Zhao L, et al.

Carbon dots as effective corrosion inhibitor for 5052 aluminium alloy in 0.1 M HCl solution

[J]. Corros. Sci., 2019, 161: 108197

DOI      URL     [本文引用: 1]

Ye Y W, Jiang Z L, Zou Y J, et al.

Evaluation of the inhibition behavior of carbon dots on carbon steel in HCl and NaCl solutions

[J]. J. Mater. Sci. Technol., 2020, 43: 144

DOI      [本文引用: 2]

An eco-friendly and effective corrosion inhibitor (N-CDs) was acquired by hydrothermal method in methacrylic acid and ethyl(methyl)amine precursors. Afterwards, the weight loss and electrochemistry measurement were chosen to appraise the corrosion inhibition behavior of as-prepared N-CDs for Q235 steel in Cl- contained solutions. The change rules of EIS and Tafel data displayed that the as-prepared N-CDs revealed a high-efficiency protection for steel in all test environments. Meanwhile, the inhibition efficiency of steel reached up to 93.93 % (1 M HCl) and 88.96 % (3.5 wt% NaCl) at 200 mg/L of N-CDs. Furthermore, the N-CDs could form the adsorption film on steel surface to avoid the strong attack of Cl-. By analysis, the adsorption mechanism of as-prepared N-CDs on steel surface was physicochemical interaction, which strictly complied with the Langmuir adsorption model in both solutions.

Zhu L L, Shen D K, Wu C F, et al.

State-of-the-art on the preparation, modification, and application of biomass-derived carbon quantum dots

[J]. Ind. Eng. Chem. Res., 2020, 59: 22017

DOI      URL     [本文引用: 1]

Chen W F, Li D J, Tian L, et al.

Synthesis of graphene quantum dots from natural polymer starch for cell imaging

[J]. Green Chem., 2018, 20: 4438

DOI      URL     [本文引用: 2]

Fang M Y, Wang B Y, Qu X L, et al.

State-of-the-art of biomass-derived carbon dots: Preparation, properties, and applications

[J]. Chin. Chem. Lett., 2024, 35: 108423

DOI      URL     [本文引用: 1]

Ding H, Wei J S, Zhang P, et al.

Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths

[J]. Small, 2018, 14: 1800612

DOI      URL     [本文引用: 1]

Li W D, Liu Y, Wang B Y, et al.

Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging

[J]. Chin. Chem. Lett., 2019, 30: 2323

DOI      URL     [本文引用: 2]

Wang L, Wang Y L, Xu T, et al.

Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties

[J]. Nat. Commun., 2014, 5: 5357

DOI      PMID      [本文引用: 2]

Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors.

Xu Y L, Wang B Y, Zhang M M, et al.

Carbon dots as a potential therapeutic agent for the treatment of cancer-related anemia

[J]. Adv. Mater., 2022, 34: 2200905

DOI      URL     [本文引用: 1]

Wang B Y, Song H Q, Tang Z Y, et al.

Ethanol-derived white emissive carbon dots: the formation process investigation and multi-color/white LEDs preparation

[J]. Nano Res., 2022, 15: 942

DOI      [本文引用: 1]

Ding H, Yu S B, Wei J S, et al.

Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism

[J]. ACS Nano, 2016, 10: 484

DOI      PMID      [本文引用: 1]

Carbon dots (CDs) with tunable photoluminescence (PL) and a quantum yield of up to 35% in water were hydrothermally synthesized in one pot and separated via silica column chromatography. These separated CDs emitted bright and stable luminescence in gradient colors from blue to red under a single-wavelength UV light. They exhibited high optical uniformity; that is, every sample showed only one peak in the PL excitation spectrum, only one peak in the excitation-independent PL emission spectrum, and similar monoexponential fluorescence lifetimes. Although these samples had similar distributions of particle size and graphite structure in their carbon cores, the surface state gradually varied among the samples, especially the degree of oxidation. Therefore, the observed red shift in their emission peaks from 440 to 625 nm was ascribed to a gradual reduction in their band gaps with the increasing incorporation of oxygen species into their surface structures. These energy bands were found to depend on the surface groups and structures but not on the particle size, not as in traditional semiconductor quantum dots. In addition, because of their excellent PL properties and low cytotoxicity, these CDs could be used to image cells in different colors under a single-wavelength light source, and the red-emitting CDs could be used to image live mice because of the strong penetration capability of their fluorescence.

Chen B B, Chang S, Jiang L, et al.

Reversible polymerization of carbon dots based on dynamic covalent imine bond

[J]. J. Colloid Interface Sci., 2022, 621: 464

DOI      URL     [本文引用: 1]

Su Y, Qiu S H, Yang D P, et al.

Active anti-corrosion of epoxy coating by nitrite ions intercalated MgAl LDH

[J]. J. Hazard. Mater., 2020, 391: 122215

DOI      URL     [本文引用: 1]

Cui M J, Ren S M, Xue Q J, et al.

Carbon dots as new eco-friendly and effective corrosion inhibitor

[J]. J. Alloy. Compd., 2017, 726: 680

DOI      URL     [本文引用: 1]

Luo J X, Cheng X, Chen X H, et al.

The effect of N and S ratios in N, S co-doped carbon dot inhibitor on metal protection in 1 M HCl solution

[J]. J. Taiwan Inst. Chem. Engineers, 2021, 127: 387

DOI      URL     [本文引用: 1]

Abdelsalam M M, Bedair M A, Hassan A M, et al.

Green synthesis, electrochemical, and DFT studies on the corrosion inhibition of steel by some novel triazole Schiff base derivatives in hydrochloric acid solution

[J]. Arab. J. Chem., 2022, 15: 103491

DOI      URL     [本文引用: 1]

Jiang B K, Chen A Y, Gu J F, et al.

Corrosion resistance enhancement of magnesium alloy by N-doped graphene quantum dots and polymethyltrimethoxysilane composite coating

[J]. Carbon, 2020, 157: 537

DOI      URL     [本文引用: 1]

Daoud D, Douadi T, Hamani H, et al.

Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: Experimental and computational study

[J]. Corros. Sci., 2015, 94: 21

DOI      URL     [本文引用: 2]

Ahamad I, Prasad R, Quraishi M A.

Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions

[J]. Corros. Sci., 2010, 52: 933

DOI      URL     [本文引用: 1]

Kıcır N, Tansuğ G, Erbil M, et al.

Investigation of ammonium (2,4-dimethylphenyl)-dithiocarbamate as a new, effective corrosion inhibitor for mild steel

[J]. Corros. Sci., 2016, 105: 88

DOI      URL     [本文引用: 1]

Saraswat V, Yadav M.

Improved corrosion resistant performance of mild steel under acid environment by novel carbon dots as green corrosion inhibitor

[J]. Colloid. Surf., 2021, 627A: 127172

[本文引用: 1]

Du R G, Liu Y, Lin C J.

Effect of chlorine ions on the corrosion behavior of reinforcing steel in concrete

[J]. Mater. Prot., 2006, 39(6): 45

[本文引用: 1]

杜荣归, 刘 玉, 林昌健.

氯离子对钢筋腐蚀机理的影响及其研究进展

[J]. 材料保护, 2006, 39(6): 45

[本文引用: 1]

Liu Y, Guo X X, Liu D L, et al.

Inhibition effect of sparteine isomers with different stereochemical conformations on the corrosion of mild steel in hydrochloric acid solution

[J]. J. Mol. Liq., 2022, 345: 117833

DOI      URL     [本文引用: 1]

/