Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 91-99     CSTR: 32134.14.1005.4537.2023.057      DOI: 10.11902/1005.4537.2023.057
  研究报告 本期目录 | 过刊浏览 |
极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究
冷文俊1,2, 石西召1, 辛永磊2, 杨延格3, 王利2, 崔中雨1(), 侯健2
1.中国海洋大学材料科学与工程学院 青岛 266100
2.中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
3.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Correlation of Corrosion Information Aquired by Indoor Acceleration Testing and by Real Low Temperature Marine Atmosphere Exposure in Polar Region for Ni-Cr-Mo-V Steel
LENG Wenjun1,2, SHI Xizhao1, XIN Yonglei2, YANG Yange3, WANG Li2, CUI Zhongyu1(), HOU Jian2
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2.Science and Technology on Marine Corrosion and Protection Laboratory, Luoyang Ship Material Research Institute, Qingdao 266237, China
3.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

冷文俊, 石西召, 辛永磊, 杨延格, 王利, 崔中雨, 侯健. 极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
Wenjun LENG, Xizhao SHI, Yonglei XIN, Yange YANG, Li WANG, Zhongyu CUI, Jian HOU. Correlation of Corrosion Information Aquired by Indoor Acceleration Testing and by Real Low Temperature Marine Atmosphere Exposure in Polar Region for Ni-Cr-Mo-V Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 91-99.

全文: PDF(10333 KB)   HTML
摘要: 

通过腐蚀失重、扫描电镜、激光共聚焦显微镜等测试方法对Ni-Cr-Mo-V钢在室内加速试验和中山站户外暴露试验后的腐蚀行为进行了对比研究。结果表明:Ni-Cr-Mo-V低合金高强钢在极地低温大气环境下腐蚀速率为11.3 μm/a,腐蚀产物由Fe3O4γ-FeOOH、α-FeOOH和β-FeOOH组成,腐蚀产物中大量的β-FeOOH表明低温环境下生成的锈层保护性较差。低温大气腐蚀以均匀腐蚀为主,冻融循环引起试样表面的电解质浓度变化,导致了锈层下点蚀的形成。在冻融循环过程中,锈层中水分由于固液相变引起的应力变化以及锈层与金属基体热胀系数的不同导致了锈层开裂。

关键词 极地环境加速腐蚀腐蚀产物冻融循环    
Abstract

In order to investigate the applicability of the proposed indoor accelerated test spectrum, which aims to simulate the low temperature marine environment in the polar region, and the corrosion mechanism of low alloy steel exposed in the real polar low temperature atmospheric environment, therefore, the Ni-Cr-Mo-V steels were subjected to indoor accelerated test in lab and to outdoor exposure test in Zhongshan station at the polar region respectively, then the corrosion behavior of the tested steels was comparatively studied by means of mass loss measurement, scanning electron microscope, and laser confocal microscope. The results revealed that the corrosion rate of the steel is 11.3 μm/a, and the corrosion products are composed of Fe3O4, γ-FeOOH, α-FeOOH and β-FeOOH. The presence of the large amount of β-FeOOH indicates that the rust scale formed in low temperature environment has poor protectiveness. The low temperature atmospheric corrosion is mainly uniform corrosion. The freeze-thaw cycle causes the alteration of electrolyte concentration on the surface of test steel, which results in the formation of pitting corrosion beneath the rust scale. During the freeze-thaw cycle, the alternation of stresses caused by the cyclical solid-liquid phase transition of the water in the rust scale and the difference of the thermal expansion coefficient between the rust scale and the metal matrix could lead to the cracking of the rust scale.

Key wordspolar environment    accelerated corrosion    corrosion products    freeze-thaw cycle
收稿日期: 2023-03-03      32134.14.1005.4537.2023.057
ZTFLH:  TG174  
基金资助:山东省重大科技创新工程项目(2020CXGC010305);山东省优秀青年科学基金(ZR2022YQ44)
通讯作者: 崔中雨,E-mail:cuizhongyu@ouc.edu.cn,研究方向为极端海洋环境腐蚀与敏感断裂
Corresponding author: CUI Zhongyu, E-mail: cuizhongyu@ouc.edu.cn
作者简介: 冷文俊,男,1998年生,硕士生
图1  2019-2021年中山站大气环境
图2  极地室内模拟加速环境试验箱及环境谱周期示意图
图3  Ni-Cr-Mo-V钢室内加速试验谱腐蚀1周期与中山站大气腐蚀1 a腐蚀速率对比
MaterialExposed positionClimaticTime / aCorrosion rate / μm·a-1
Q235Zhongshan stationPolar marine atmosphere116.3
Q460Zhongshan station110.8
Q960Zhongshan station115.8
Ni-Cr-Mo-VZhongshan station113.0
Q235QingdaoTemperate marine atmosphere118.7
Q460Qingdao117.0
Q960Qingdao117.3
Q235GuangzhouSubtropical marine atmosphere[9]132.6
Q345Guangzhou130.9
Q235Wanning163.6
Q345Wanning158.8
Q235MaldivesTropical marine atmosphere[10]1119.0
WSMaldives174.0
3Ni WSMaldives149.0
表1  钢铁材料在不同大气环境下的腐蚀速率
图4  不同环境下Ni-Cr-Mo-V钢腐蚀产物的表面形貌
图5  不同环境下Ni-Cr-Mo-V钢腐蚀产物的截面形貌
图6  不同环境下Ni-Cr-Mo-V钢的表面腐蚀形貌
图7  室内模拟及南极大气环境下Ni-Cr-Mo-V钢腐蚀产物XRD及物相组成的半定量分析结果
图8  低温及冰雪凝-融环境下的大气腐蚀机理
1 Morcillo M, Chico B, De La Fuente D, et al. Atmospheric corrosion of reference metals in Antarctic sites [J]. Cold Regions Sci. Technol., 2004, 40: 165
doi: 10.1016/j.coldregions.2004.06.009
2 Rosales B, Fernandez A. Parameters controlling steel and copper corrosion nucleation and propagation in Antarctica [C] Nace Northern Area-western Region Conference, "Shining a Northern Light on Corrosion", Anchorage, America, 2001
3 Maxwell P, Viduka A. Antarctic Observations: On metal corrosion at three historic huts on Ross Island [C]. Proceedings of Metal, National Museum of Australia, Australia, 2004
4 Qu S P, Zhao X Y, Xuan X Y. New challenges on corrosion and protection of polar steel [J/OL]. Mater. Sci. Technol., 2022: 1. (2022-10-13).
4 屈少鹏, 赵行娅, 轩星雨. 极地钢铁材料的腐蚀与防护面临新挑战 [J/OL]. 材料科学与工艺, 2022: 1. (2022-10-13).
5 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
5 崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
6 Luo H, Li X G, Dong C F, et al. Research on atmosphere exposure in tropical marine and accelerated corrosion test of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 193
6 骆 鸿, 李晓刚, 董超芳 等. 304不锈钢在热带海洋大气下暴露实验和加速腐蚀实验研究 [J]. 中国腐蚀与防护学报, 2013, 33: 193
7 Wei H H, Lei T Q, Zheng D D, et al. Corrosion characteristics of butt welds of Q690 high strength steel in laboratory test as an enviormental simulation of ocean splash zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 675
7 魏欢欢, 雷天奇, 郑东东 等. Q690高强钢对接焊缝加速腐蚀试验研究 [J]. 中国腐蚀与防护学报, 2022, 42: 675
doi: 10.11902/1005.4537.2021.191
8 Leng W J, Cui Z Y, Wang X, et al. Preparation and study of accelerated corrosion test spectrum of low alloy high strength steel in polar environment [J]. Dev. Appl. Mater., 2023, 38(3): 31
8 冷文俊, 崔中雨, 王 昕 等. 低合金高强钢极地环境加速腐蚀试验谱编制与研究 [J]. 材料开发与应用, 2023, 38(3): 31
9 Huang J C, Meng X B, Huang Y H, et al. Atmospheric corrosion of carbon steels in tropical and subtropical climates in Southern China [J]. Mater. Corros., 2020, 71: 1400
10 Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
11 Zhang P P, Yang Z M, Chen Y, et al. Corrosion behavior of Cr-Ni-Cu low alloy cast steel in marine atmospheric environment [J]. J. Iron Steel Res., 2017, 29: 128
11 张飘飘, 杨忠民, 陈 颖 等. Cr-Ni-Cu系低合金铸钢在海洋大气环境中的腐蚀行为 [J]. 钢铁研究学报, 2017, 29: 128
12 Oyabu M, Nomura K, Koike Y, et al. Mössbauer and XRD analysis of corrosion products on weathering steel treated by wet-dry cycles using various solutions [J]. Hyperf. Interact., 2016, 237: 68
doi: 10.1007/s10751-016-1244-2
13 Morcillo M, González-Calbet J M, Jiménez J A, et al. Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization [J]. Corrosion, 2015, 71: 872
doi: 10.5006/1672
14 Li S X, Hihara L H. A micro-raman spectroscopic study of marine atmospheric corrosion of carbon steel: the effect of akaganeite [J]. J. Electrochem. Soc., 2015, 162: C495
doi: 10.1149/2.0881509jes
15 Xiao H G. Mechanism of formation and evolution process of akaganeite on Q235 during marine atmospheric corrosion [D]. Beijing: University of Chinese Academy of Sciences, 2017
15 肖海刚. 海洋大气腐蚀中β-FeOOH在Q235表面形成及演化机制研究 [D]. 北京: 中国科学院大学, 2017
16 Huang W L, Yan M, Mulvaney R, et al. Spatial variability of glaciochemistry along a transect from Zhongshan station to LGB69, Antarctica [J]. Atmosphere, 2021, 12: 393
17 Man C, Guo J Y, Sun Y X, et al. Failure behaviour of some classical protective coatings in antarctic environments [J]. Surf. Technol., 2022, 51(6): 27
17 满 成, 国景一, 孙议祥 等. 典型防护涂层体系在南极大气环境中的失效行为研究 [J]. 表面技术, 2022, 51(6): 27
18 Xu G J, Chen L Q, Zhang M M, et al. Year-round records of bulk aerosol composition over the Zhongshan Station, Coastal East Antarctica [J]. Air Qual. Atmos. Health, 2019, 12: 271
doi: 10.1007/s11869-018-0642-9
19 Ma Y T, Li Y, Wang F H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment [J]. Mater. Chem. Phys., 2008, 112: 844
doi: 10.1016/j.matchemphys.2008.06.066
20 Tanaka H, Mishima R, Hatanaka N, et al. Formation of magnetite rust particles by reacting iron powder with artificial α-, β-and γ-FeOOH in aqueous media [J]. Corros. Sci., 2014, 78: 384
doi: 10.1016/j.corsci.2013.08.023
21 Fu T, Song G L, Zheng D J. Corrosion damage in frozen 3.5 wt. % NaCl solution [J]. Mater. Corros. Werkstoffe Korros., 2021, 72: 1396
22 Inagawa A, Maeda M, Uehara N. In situ visualization of ferrous ions dissolved from pure iron wire into thin frozen aqueous solution films by combination of microscopy and image processing [J]. Sensors Mater., 2022, 34: 915
23 Ge F. Corrosion behavior and mechanism of typical metals in Antarctic atmosphere [D]. Qingdao: Ocean University of China, 2021
23 葛 峰. 南极大气条件下典型金属的腐蚀行为及机理研究 [D]. 青岛: 中国海洋大学, 2021
24 Wang T, Meng H M, Guo W H, et al. Influence of dry-wet ratio on electrochemical corrosion behavior of CrNiMoV steel in 120 mmol/L NH4H2PO4 solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 948
24 王 通, 孟惠民, 郭维华 等. 干湿比对CrNiMoV钢在120 mmol/L NH4H2PO4溶液中电化学腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 948
[1] 白雪寒, 丁康康, 张彭辉, 范林, 张慧霞, 刘少通. AH36船用钢海水加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[2] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[3] 潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[4] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[5] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[6] 周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[7] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[8] 李晗, 刘元海, 赵连红, 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[9] 王小红, 李子硕, 唐御峰, 谭浩, 蒋焰罡. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
[10] 薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[11] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[12] 徐迪, 杨小佳, 李清, 程学群, 李晓刚. 材料大气环境腐蚀试验方法与评价技术进展[J]. 中国腐蚀与防护学报, 2022, 42(3): 447-457.
[13] 王家明, 杨昊东, 杜敏, 彭文山, 陈翰林, 郭为民, 蔺存国. B10铜镍合金在高浓度NH4+污染海水中腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 609-616.
[14] 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[15] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.