Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 104-110     CSTR: 32134.14.1005.4537.2022.003      DOI: 10.11902/1005.4537.2022.003
  研究报告 本期目录 | 过刊浏览 |
烧结NdFeB表面Zn-Al涂层制备及耐腐蚀机理研究
江杰1,2, 姜建军2, 杨丽景2, 雷步芳1, 赵宇3, 林建强4, 宋振纶2()
1.太原科技大学材料科学与工程学院 太原 030024
2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室 宁波 315201
3.杭州永磁集团有限公司 宁波 311231
4.宁波招宝磁业有限公司 宁波 315299
Preparation and Corrosion Resistance of Zn-Al Coating on Sintered NdFeB Permanent Magnet
JIANG Jie1,2, JIANG Jianjun2, YANG Lijing2, LEI Bufang1, ZHAO Yu3, LIN Jianqiang4, SONG Zhenlun2()
1.School of Materials Science and Engineering, Taiyuan University of science and Technology, Taiyuan 030024, China
2.Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
3.Hangzhou Permanent Magnet Group Co. Ltd., Ningbo 311231, China
4.Ningbo Zhaobao Magnetic Industry Co. Ltd., Ningbo 315299, China
全文: PDF(7196 KB)   HTML
摘要: 

在烧结钕铁硼永磁试样表面制备了无铬锌铝烧结涂层,并确定了工艺参数。利用扫描电子显微镜 (SEM)、能谱仪 (EDS)、X射线衍射仪 (XRD)、Fourier变换红外光谱 (FTIR)、热重分析和差热综合热分析仪 (TG-DTA) 对涂层的形貌、组成和形成机理进行了观察和研究。讨论了涂层耐腐蚀机制及其对磁体磁性能的影响。结果表明:Zn-Al涂层均匀地涂覆于NdFeB磁体表面,涂层厚度约为27 µm,耐中性盐雾实验能力高达1000 h以上,对NdFeB基体起到阴极保护作用和物理屏蔽功能。

关键词 无铬Zn-Al涂层微观形貌硅烷耐蚀性稀土    
Abstract

A Cr-free Zn-Al coating was prepared via a two-step process, namely spraying Zn-Al paste and subsequently baking, on the surface of sintered Nd-Fe-B permanent magnet, and which was further examined by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis, and differential thermal comprehensive thermal analyzer (TG-DTA) in terms of its morphology, composition, and formation mechanism of the coating. The corrosion behavior of the coated Nd-Fe-B magnet was studied via immersion testing in 3.5%NaCl solution, and neutral salt spray testing. The results show that Zn-Al coating is uniformly coated on the surface of the NdFeB magnet, the coating thickness is about 27 µm, while, its corrosion resistance to neutral salt spray testing is higher than 1000 h; In other word, the Cr-free Zn-Al coating can provide excellent cathodic protection and physical barrier for NdFeB permanent magnet.

Key wordschromium-free Zn-Al coating    micromorphology    silane    corrosion resistance    rare earth
收稿日期: 2022-01-01      32134.14.1005.4537.2022.003
ZTFLH:  TG174  
基金资助:国家重点研发计划(2021YFB3502902);宁波市重点技术研发项目(2021Z024)
作者简介: 江杰,男,1996年生,硕士生

引用本文:

江杰, 姜建军, 杨丽景, 雷步芳, 赵宇, 林建强, 宋振纶. 烧结NdFeB表面Zn-Al涂层制备及耐腐蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 104-110.
Jie JIANG, Jianjun JIANG, Lijing YANG, Bufang LEI, Yu ZHAO, Jianqiang LIN, Zhenlun SONG. Preparation and Corrosion Resistance of Zn-Al Coating on Sintered NdFeB Permanent Magnet. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 104-110.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.003      或      https://www.jcscp.org/CN/Y2023/V43/I1/104

图1  表面形貌和元素分布图
图2  Zn-Al涂层的截面形貌、截面EDS谱及XRD谱
图3  KH-560硅烷水解溶液的红外光谱图
图4  Zn-Al涂层的热重曲线
图5  Zn-Al涂层样品在NSS溶液中不同时间腐蚀后的形貌
图6  Zn-Al涂层样品在20%NH4NO3溶液中不同时间腐蚀后的形貌
图7  Zn-Al涂层在20%NH4NO3溶液中不同腐蚀时间的XRD谱
图8  样品在20%NH4NO3溶液中浸泡不同时间后的极化曲线
SampleEcorrV vs.SCEIcorrA·cm-2ΒcV·dec-1ΒaV·dec-1Rp
NdFeB-0.8675.035×10-50.724530.506071285.1
0 min-1.1218.480×10-60.156150.264334189.5
30 min-1.1491.534×10-50.309710.152481954
60 min-1.0755.156×10-60.108790.138063559.3
90 min-1.0906.694×10-60.303900.168274723.5
120 min-1.0267.429×10-60.246330.178625086.5
150 min-0.9402.885×10-51.123500.504815461.5
表1  样品在20%NH4NO3溶液中浸泡不同时间后的电化学测试结果
图9  样品在20%NH4NO3溶液中浸泡不同时间后的Nyquist图和bode图
图10  原始样品、300 ℃热处理样品和Zn-Al涂层样品磁性能
1 Sagawa M, Fujimura S, Togawa N, et al. New material for permanent magnets on a base of Nd and Fe (invited) [J]. J. Appl. Phys., 1984, 55: 2083
doi: 10.1063/1.333572
2 Jacobson J, Kim A. Oxidation behavior of Nd-Fe-B magnets [J]. J. Appl. Phys., 1987, 61: 3763
doi: 10.1063/1.338635
3 Schultz L, El-Aziz A M, Barkleit G, et al. Corrosion behaviour of Nd-Fe-B permanent magnetic alloys [J]. Mater. Sci. Eng., 1999, 267A: 307
4 El-Moneim A A, Gebert A. Electrochemical characterization of galvanically coupled single phases and nanocrystalline NdFeB-based magnets in NaCl solutions [J]. J. Appl. Electrochem., 2003, 33: 795
doi: 10.1023/A:1025548411091
5 Bala H, Pawłowska G, Szymura S, et al. Corrosion characteristics of Nd-Fe-B sintered magnets containing various alloying elements [J]. J. Magn. Magn. Mater., 1990, 87: L255
doi: 10.1016/0304-8853(90)90757-H
6 Walton A, Speight J D, Williams A J, et al. Zinc coating method for Nd-Fe-B magnets [J]. J. Alloy. Compd., 2000, 306: 253
doi: 10.1016/S0925-8388(00)00773-8
7 Yan M, Zhang X X, Wu L. Effects of ultrasonic electroless Ni-P plating on the corrosion resistance of sintered ndfeb magnets [J] J. Chin. Soc. Corros. Prot., 2006, 26: 100
7 严密, 张小星, 吴磊. 超声化学镀对烧结钕铁硼磁体抗腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2006, 26: 100
8 Bastos A C, Ferreira M G S, Simões A M. Comparative electrochemical studies of zinc chromate and zinc phosphate as corrosion inhibitors for zinc [J]. Prog. Org. Coat., 2005, 52: 339
doi: 10.1016/j.porgcoat.2004.09.009
9 Hu H L, Li N, Cheng J N, et al. Corrosion behavior of chromium-free dacromet coating in seawater [J]. J. Alloy. Compd., 2009, 472: 219
doi: 10.1016/j.jallcom.2008.04.029
10 Xiao H S. Inspective method of Dacromet treatment [J]. Electroplat. Finish., 2004, 23(1): 45
10 肖合森. 达克罗处理的检测方法 [J]. 电镀与涂饰, 2004, 23(1): 45
11 Park Y I, Nagai M. Proton exchange nanocomposite membranes based on 3-glycidoxypropyltrimethoxysilane, silicotungstic acid and α-zirconium phosphate hydrate [J]. Solid State Ionics, 2004, 145: 149
doi: 10.1016/S0167-2738(01)00925-0
12 Ferreira M G S, Duarte R G, Montemor M F, et al. Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel [J]. Electrochim. Acta, 2004, 49: 2927
doi: 10.1016/j.electacta.2004.01.051
13 Caldara M, Colleoni C, Guido E, et al. Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating [J]. Sens. Actuators, 2016, 222B: 213
14 Amoriello S, Bianco A, Eusebio L, et al. Evolution of two acid steps sol-gel phases by FTIR [J]. J. Sol-Gel Sci. Technol., 2011, 58: 209
doi: 10.1007/s10971-010-2379-2
15 Brewis D M, Comyn J, Oxley D P, et al. Inelastic electron tunnelling spectroscopy of silane coupling agents [J]. Surf. Interface Anal., 1984, 6: 40
doi: 10.1002/sia.740060107
16 Criado M, Sobrados I, Sanz J. Polymerization of hybrid organic-inorganic materials from several silicon compounds followed by TGA/DTA, FTIR and NMR techniques [J]. Prog. Org. Coat., 2014, 77: 880
17 Ma R, Li Q K, Wang L, et al. Mechanical properties and in vivo study of modified-hydroxyapatite/polyetheretherketone biocomposites [J]. Mater. Sci. Eng., 2017, 73C: 429
18 Cao J Y, Fang Z G, Li L, et al. Corrosion behavior of domestic galvanized steel in different water environment: fresh water and salt water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 169
18 曹京宜, 方志刚, 李亮 等. 国产镀锌钢在不同水环境中的腐蚀行为: I淡水和盐水 [J]. 中国腐蚀与防护学报, 2021, 41: 169
19 Zheng J W, Lin M, Xia Q P. A preparation method and effects of Al-Cr coating on NdFeB sintered magnets [J]. J. Magn. Magn. Mater., 2012, 324: 3966
doi: 10.1016/j.jmmm.2012.07.006
20 Zhang K B, Zhang M M, Qiao J F, et al. Enhancement of the corrosion resistance of zinc-aluminum-chromium coating with cerium nitrate [J]. J. Alloy. Comps., 2017, 692: 460
doi: 10.1016/j.jallcom.2016.05.182
21 Potvin E, Brossard L, Larochelle G. Corrosion protective performances of commercial low-VOC epoxy/urethane coatings on hot-rolled 1010 mild steel [J]. Prog. Org. Coat., 1997, 31: 363
doi: 10.1016/S0300-9440(97)00095-7
22 Chen J, Xu J L, Huang J, et al. Corrosion resistance of T-ZnOw/PDMS-MAO composite coating on the sintered NdFeB magnet [J]. J. Magn. Magn. Mater., 2021, 534: 168049
doi: 10.1016/j.jmmm.2021.168049
[1] 商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[2] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[3] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[4] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[5] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[6] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[7] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[8] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[9] 黄苗, 王丽姿, 马晓青, 李向红. 核桃青皮提取物与Nd(NO3)3对Al在HCl溶液中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2023, 43(3): 471-480.
[10] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[11] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[12] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[13] 魏欢欢, 郑东东, 陈晨, 张大伟, 王凯励. Q690高强钢在模拟海洋浪溅区环境下耐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 186-190.
[14] 曹京宜, 臧勃林, 曹宝学, 李亮, 方志刚, 郑宏鹏, 刘莉, 王福会. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1009-1015.
[15] 李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 966-972.