Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 590-596    DOI: 10.11902/1005.4537.2021.205
  研究报告 本期目录 | 过刊浏览 |
硅烷偶联剂 (KH550) 和羟基硅油共同改性环氧树脂及配制富镁底漆性能研究
戈成岳1,2, 罗祥平3(), 王静1, 段继周1, 王宁1, 侯保荣1
1.中国科学院海洋研究所 中国科学院海洋环境腐蚀与生物污损重点实验室 青岛 266071
2.青岛海洋科学与技术试点国家实验室 海洋腐蚀与防护开放工作室 青岛 266237
3.北京市燃气集团有限责任公司 北京 100035
Properties of KH550 and Hydroxyl Silicone Oil Co-modified Epoxy Resin and Its Mg-rich Primer
GE Chengyue1,2, LUO Xiangping3(), WANG Jing1, DUAN Jizhou1, WANG Ning1, HOU Baorong1
1.Key Laboratory of Marine Environmental Corrosion and Bio-Fouling of Chinese Academy of Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2.Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
3.Beijing Gas Group Company Limited, Beijing 100035, China
全文: PDF(2736 KB)   HTML
摘要: 

通过两步反应法实现了硅烷偶联剂KH550和羟基硅油对环氧树脂E-20的共同改性,利用胺基加成反应引入KH550的乙氧基基团增加E-20的活性,从而提高与羟基硅油的接枝效率。通过红外光谱、GPC测试、稳定性分析以及DSC测试研究了分步反应过程和反应物配比对改性树脂性能的影响,优化改性工艺。研究表明,合适的反应物配比为E-20∶羟基硅油∶KH550=10∶1.5∶0.5 (质量比)。进一步利用改性树脂配制富镁涂层,通过涂层基本性能测试、盐雾试验和老化试验,研究了涂层对铝合金的保护性能。研究表明,涂层具有高的附着力,柔韧性好,耐盐雾和耐老化性能提高明显。

关键词 富镁涂层接枝聚合环氧树脂改性铝合金保护    
Abstract

Epoxy resin (E-20) was co-modified by silane coupling agent (KH550) and hydroxyl silicone oil through a two-step reaction process. The ethoxy group (coming from KH550) was introduced into E-20 by addition reaction of primary amine to increase the activity, thereby the grafting efficiency of E-20 with hydroxyl silicone oil was improved. The mechanism of two-step reaction process and the effect of reactant ratio on properties of modified resin were studied in detail through IR, GPC test, stability analysis and DSC test so that to optimize modification parameters. The results show that the appropriate ratio of reactants was E-20: hydroxyl silicone oil: KH550=10:1.5:0.5 (mass ratio). Further, the Mg-rich primer made of the modified resin was prepared and then applied on Al-alloy, afterwards the protective performance for the Mg-rich primer coated Al-alloy was assessed through salt spray testing and aging testing. The results show that this coating has high adhesion and good flexibility, as well as excellent salt spray resistance and aging resistance.

Key wordsMg-rich coating    graft polymerization    modification of epoxy resin    protection of Al-alloy
收稿日期: 2021-08-17     
ZTFLH:  TG174  
基金资助:国家重点研发计划(2019YFC0312103);中国科学院南海生态环境工程创新研究院创新发展基金(ISEE2018YB05);国家自然科学基金(42006046)
通讯作者: 罗祥平     E-mail: luoxiangping@bigas.com
Corresponding author: LUO Xiangping     E-mail: luoxiangping@bigas.com
作者简介: 戈成岳,男,1982年生,博士,高级工程师

引用本文:

戈成岳, 罗祥平, 王静, 段继周, 王宁, 侯保荣. 硅烷偶联剂 (KH550) 和羟基硅油共同改性环氧树脂及配制富镁底漆性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.
Chengyue GE, Xiangping LUO, Jing WANG, Jizhou DUAN, Ning WANG, Baorong HOU. Properties of KH550 and Hydroxyl Silicone Oil Co-modified Epoxy Resin and Its Mg-rich Primer. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 590-596.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.205      或      https://www.jcscp.org/CN/Y2022/V42/I4/590

图1  环氧树脂改性技术路线图
图2  中间产物和反应物及最终产物红外光谱图
图3  中间产物和最终产物GPC曲线
图4  不同配比所得改性产物红外光谱图
图5  不同配比所得改性产物GPC曲线及拟合数值
表1  不同配比所得改性树脂放置稳定性
图6  不同配比所得改性树脂DSC曲线及拟合数值
图7  不同改性树脂配制涂层的盐雾实验和老化实验后宏观形貌
1 Xu H, Battocchi D, Tallman D E, et al. Use of Magnesium alloys as pigments in Magnesium-rich primers for protecting aluminum alloys [J]. Corrosion, 2009, 65: 318
doi: 10.5006/1.3319136
2 Allahar K N, Battocchi D, Orazem M E, et al. Modeling of electrochemical impedance data of a magnesium-rich primer [J]. J. Electrochem. Soc., 2008, 155: E143
doi: 10.1149/1.2965519
3 Simões A M, Battocchi D, Tallman D, et al. Assessment of the corrosion protection of aluminium substrates by a Mg-rich primer: EIS, SVET and SECM study [J]. Prog. Org. Coat., 2008, 63: 260
doi: 10.1016/j.porgcoat.2008.02.007
4 Bierwagen G P, Battocchi D, Simoes A, et al. The use of multiple electrochemical techniques to characterize Mg-rich primers for Al alloys [J]. Prog. Org. Coat., 2007, 59: 172
doi: 10.1016/j.porgcoat.2007.01.022
5 Wang G R, Zheng H P, Cai H Y, et al. Failure process of epoxy coating subjected test of alternating immersion in artificial seawater and dry in air [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 571
5 王贵容, 郑宏鹏, 蔡华洋 等. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程 [J]. 中国腐蚀与防护学报, 2019, 39: 571
6 Li Y, Zheng S R, Wang Q L, et al. Latest research progress of toughening and modifying epoxy resin [J]. China Adhes., 2013, 22(7): 47
6 李英, 郑水蓉, 汪前莉 等. 增韧改性环氧树脂的最新研究进展 [J]. 中国胶粘剂, 2013, 22(7): 47
7 Li Y W, Shen M M, Ma Y J, et al. Synthesis of polyphenylmethoxy silicone modified epoxy resins [J]. Polym. Mater. Sci. Eng., 2010, 26(1): 22
7 李因文, 沈敏敏, 马一静 等. 聚苯基甲氧基硅烷及其改性环氧树脂的合成与性能 [J]. 高分子材料科学与工程, 2010, 26(1): 22
8 Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
8 师超, 邵亚薇, 熊义 等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 38
9 Chen J, Kinloch A J, Sprenger S, et al. The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles [J]. Polymer, 2013, 54: 4276
doi: 10.1016/j.polymer.2013.06.009
10 Huang W, Yao Y, Huang Y, et al. Surface modification of epoxy resin by polyether-polydimethylsiloxanes-polyether triblock copolymers [J]. Polymer, 2001, 42: 1763
doi: 10.1016/S0032-3861(00)00393-1
11 Xu T T, Chen Z Q, Tian W P, et al. Protective performance of a novel silicone coating ES150 modified with nano-particulate of metal for AZ91D Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 373
11 徐涛涛, 陈祝桥, 田卫平 等. ES150型纳米改性有机硅涂料的防护作用及其应用 [J]. 中国腐蚀与防护学报, 2018, 38: 373
12 Ge C Y, Zhao X, Guo Y D, et al. Study on preparation of magnesium-rich composite coating and performance enhancement by graft modification of epoxy resin [J]. Sci. Eng. Compos. Mater., 2019, 26: 308
doi: 10.1515/secm-2019-0009
13 Li G L. Epoxy Resin & Epoxy Coating[M]. Beijing: Chemical Industry Press, 2003: 30
13 李桂林. 环氧树脂与环氧涂料 [M]. 北京: 化学工业出版社, 2003: 30
14 Li L H, Zhang S F, Yang J Z, et al. Charge control and IR analysis of amine on diarylide yellow pigment PY14 [J]. Spectrosc. Spectr. Anal., 2005, 25: 1584
14 李路海, 张淑芬, 杨锦宗 等. 胺对联苯胺黄颜料的电荷控制作用及其红外光谱分析 [J]. 光谱学与光谱分析, 2005, 25: 1584
15 Ge C Y, Fu W F, Ling J X, et al. Study on preparation and property of magnesium-rich primer used for protection of aluminum alloy [J]. Paint Coat. Ind., 2013, 43(4): 23
15 戈成岳, 付文峰, 凌建雄 等. 铝合金保护用富镁底漆的研制及其性能研究 [J]. 涂料工业, 2013, 43(4): 23
[1] 刘永强, 刘光明, 范文学, 唐荣茂, 甘鸿禹, 师超. 苯甲酸钠在酸性Zn-Ni镀液中对Zn阳极溶解行为影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 605-612.
[2] 高秋英, 徐亦璇, 胡鹏伟, 姚田万, 齐文龙. 天然气再生塔底重沸器腐蚀与防护技术研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 699-704.
[3] 梁志远, 徐一鸣, 王硕, 李玉峰, 赵钦新. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[4] 陈佳起, 侯道林, 肖晗, 高雨薇, 董社英. 酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[5] 胡蕴媛, 钱伟, 花银群, 叶云霞, 蔡杰, 戴峰泽. 预腐蚀工艺对Gd2Zr2O7陶瓷抗CMAS腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[6] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[7] 马小泽, 孟令东, 曹祥康, 肖松, 董泽华. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[8] 滕琳, 陈旭. 海洋环境中金属电偶腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[9] 官宇, 刘光明, 张民强, 刘欢欢, 柳志浩, 龚兵兵. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.
[10] 张正阳, 郭子新, 周欣, 孙海静, 孙杰. 纳米埃洛石装载苯并三氮唑自修复涂层研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 705-708.
[11] 程鹏, 刘静, 黄峰, 黄先球, 庞涛. 690 MPa级耐候桥梁钢在模拟工业大气环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 563-572.
[12] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[13] 梅佳雪, 杜尊峰, 朱海涛. 基于随机腐蚀的船舶结构极限承载力研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
[14] 王晓 刘峰 李焰 张威 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[15] 樊志彬 李辛庚 王晓明 王倩. 区域性大气腐蚀图绘制技术研究进展[J]. 中国腐蚀与防护学报, 0, (): 0-0.