Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (3): 267-273    DOI: 10.11902/1005.4537.2018.118
  研究报告 本期目录 | 过刊浏览 |
豆粕提取物在盐酸中对Q235钢的缓蚀性能
王霞(),任帅飞,张代雄,蒋欢,古月
西南石油大学材料科学与工程学院 成都 610500
Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium
Xia WANG(),Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU
School of Material Science and Engineering, Southwest Petroleum University, Chengdu 610500, China
全文: PDF(4021 KB)   HTML
摘要: 

采用失重法、极化曲线、电化学阻抗谱、扫描电子显微镜等方法研究了豆粕提取物 (SME) 作为植物缓蚀剂对Q235钢的缓蚀性能。结果表明,缓蚀剂在25~90 ℃范围内,随着温度升高,缓蚀效率先升高后降低。在温度为40 ℃,缓蚀剂浓度为0.8 g/L时,缓蚀效率达到92%。缓蚀剂对阳极和阴极都有抑制作用,属于混合型缓蚀剂。缓蚀剂分子在Q235钢表面的吸附符合Langmuir等温吸附模型,既有化学吸附也有物理吸附。

关键词 豆粕植物缓蚀剂Q235钢动电位极化曲线电化学阻抗谱    
Abstract

The inhibition effect of soybean meal extract (SME) on the corrosion of Q235 carbon steel in 1 mol/L HCl solution was investigated by weight loss method, potentiodynamic polarization curve measurement, electrochemical impedance spectroscopy and scanning electron microscope. The inhibition efficiency increased and then decreased with the increasing temperature in the range of 25~90 ℃. With a dose of 0.8 g/L SME, the inhibition efficiency was 92% at 40 ℃, and the SME acted as a mixed-type inhibitor. The adsorption of SME on Q235 steel accorded with Langmuir isothermal equation, and including chemical and physical adsorption.

Key wordssoybean meal    plant corrosion inhibitor    Q235 steel    polarization curve    electrochemical impedance spectroscopy
收稿日期: 2018-08-25     
ZTFLH:  TG174.42  
基金资助:国家自然科学基金(51774242)
通讯作者: 王霞     E-mail: swpi_wx@126.com
Corresponding author: Xia WANG     E-mail: swpi_wx@126.com
作者简介: 王霞,女,1966年生,教授

引用本文:

王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
Xia WANG, Shuaifei REN, Daixiong ZHANG, Huan JIANG, Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium. Journal of Chinese Society for Corrosion and protection, 2019, 39(3): 267-273.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.118      或      https://www.jcscp.org/CN/Y2019/V39/I3/267

图1  豆粕提取物的FT-IR谱
图2  Q235钢在不同温度下HCl溶液中的缓蚀效率随缓蚀剂SME浓度的变化
图3  Q235钢在40 ℃下含不同浓度SME的1 mol/L HCl溶液中的动电位极化曲线
Concentrationg/L

-Ecorr

mV

Icorr

μA·cm-2

βa

mV·dec-1

-βc

mV·dec-1

η

%

Rd

%

Blank440113488115------
0.2472205104103810.8
0.4470124105168891.1
0.645411081107901.4
0.848296106117911.2
表1  Q235钢在40 ℃下含不同浓度SME的1 mol/L HCl溶液中的动电位极化曲线参数
图4  Q235钢在40 ℃下含不同浓度SME的1 mol/L HCl溶液中的电化学阻抗谱
图5  等效电路图
Concentration / g·L-1Cdl / μF·cm-2nRp / Ω·cm2η / %
Blank2830.914---
0.22010.87480
0.41570.912087
0.61440.916491
0.81110.918892
表2  Q235钢在40 ℃下未加和添加不同浓度SME的1 mol/L HCl溶液中的电化学阻抗谱参数
图6  不同温度下Q235钢在含不同浓度SME的1 mol/L HCl溶液中的Langmuir吸附等温模型
Temperature / ℃SlopeR2
251.040.98
401.010.99
551.110.98
701.150.99
表3  不同温度下Q235钢在含不同浓度SME缓蚀剂的1 mol/L HCl溶液中的Langmuir吸附参数
图7  SME缓蚀剂在Q235钢表面吸附的ln Kads与1000/T关系曲线

Temperature

K

ΔGads

kJ·mol-1

ΔHads

kJ·mol-1

ΔSads

J·mol-1·K-1

298-22.09-37.01-50.06
313-24.85-37.01-38.84
328-23.80-37.01-40.27
343-26.97-37.01-29.27
表4  Q235钢在不同温度下含SME缓蚀剂的1 mol/L HCl溶液中的吸附热力学参数
图8  Q235钢在40 ℃下1 mol /L HCl溶液中腐蚀6 h前后的SEM像
图9  Q235钢在40 ℃下1 mol /L HCl溶液中腐蚀6 h前后表面的EDS分析结果
PositionFeNCl
193.45------
270.03---0.27
387.871.02---
表5  Q235钢腐蚀前后表面元素含量
[1] Raja P B, Sethuraman M G. Natural products as corrosion inhibitor for metals in corrosive media—a review [J]. Mater. Lett., 2008, 62: 113
[2] Wang X, Ren S F, Jiang H, et al. Preparation method and research direction of plant corrosion inhibitors [J]. Surf. Technol., 2018, 47(3): 196
[2] (王霞, 任帅飞, 蒋欢等. 植物缓蚀剂的制备方法与研究方向 [J]. 表面技术, 2018, 47(3): 196)
[3] Deng Q, Shi H W, Ding N N, et al. Novel triazolyl bis-amino acid derivatives readily synthesized via click chemistry as potential corrosion inhibitors for mild steel in HCl [J]. Corros. Sci., 2012, 57: 220
[4] Barouni K, Kassale A, Albourine A, et al. Amino acids as corrosion inhibitors for copper in nitric acid medium: Experimental and theoretical study [J]. J. Mater. Environ. Sci., 2014, 5: 456
[5] Wu W M, Yang P, Du H Y, et al. Application of amino acid in metal corrosion suppression [J]. Surf. Technol., 2006, 35(6): 51
[5] (吴伟明, 杨萍, 杜海燕等. 绿色缓蚀剂氨基酸在抑制金属腐蚀方面的应用 [J]. 表面技术, 2006, 35(6): 51)
[6] Li X H, Deng S D, Xie X G, et al. Inhibition effect of bamboo leaf extract on the corrosion of aluminum in HCl solution [J]. Acta Phys. Chim. Sin., 2014, 30: 1883
[7] Nasser R M. Novel green soybean oil derivatives as corrosion inhibitors for mild steel at 0.5N HCl [J]. Pet. Coal, 2017, 59: 357
[8] Xiao Z J, Liu P H, Qin J Y, et al. Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate [J]. Appl. Microbiol. Biotechnol., 2007, 74: 61
[9] Lagos L V, Stein H H. Chemical composition and amino acid digestibility of soybean meal produced in the United States, China, Argentina, Brazil, or India [J]. J. Anim. Sci., 2017, 95: 1626
[10] Zhu Z Y, Yuan J, Ju X R, et al. Detection of soybean protein and crude fat by Fourier transform-near infrared spectroscopy [J]. J. Food Saf. Qual., 2015, 6: 4924
[10] (朱贞映, 袁建, 鞠兴荣等. 傅立叶变换近红外光谱在大豆蛋白质和粗脂肪检测中的研究 [J]. 食品安全质量检测学报, 2015, 6: 4924)
[11] Baianu I C, You T F, Guo J, Nelson R L, et al. Determination of isoflavone contents for selected soybean lines by Fourier transform near infrared reflectance spectroscopy [J]. Nat. Preced., 2011, doi: 10.1038/npre.2011.6194.1
[12] Ahn M S, Jie E Y, Song S Y, et al. Simultaneous estimation of saponin contents from soybean seed using Fourier transform infrared spectroscopy and high-performance liquid chromatography analysis [J]. Plant Biotechnol. Rep., 2016, 10: 403
[13] Wolfenden R, Lewis Jr C A, Yuan Y, et al. Temperature dependence of amino acid hydrophobicities [J]. Proc. Natl. Acad. Sci. U. S. A.,2015, 112: 7484
[14] Ahamad I, Quraishi M A. Mebendazole: New and efficient corrosion inhibitor for mild steel in acid medium [J]. Corros. Sci., 2010, 52: 651
[15] Jokar M, Farahani T S, Ramezanzadeh B. Electrochemical and surface characterizations of morus alba pendula leaves extract (maple) as a green corrosion inhibitor for steel in 1 M HCl [J]. J. Taiwan Inst. Chem. Eng., 2016, 63: 436
[16] Hu Q, Qiu Y B, Zhang G A, et al. Capsella bursa-pastoris extract as an eco-friendly inhibitor on the corrosion of Q235 carbon steels in 1 mol·L-1 hydrochloric acid [J]. Chin. J. Chem. Eng., 2015, 23: 1408
[17] Fouda A S, El-Awady G Y, El Behairy W T. Prosopis juliflora plant extract as potential corrosion inhibitor for low-carbon steel in 1 M HCl solution [J]. J. Bio. Tribo. Corros., 2018, 4: 8
[18] Verma C, Quraishi M A, Singh A. A thermodynamical, electrochemical, theoretical and surface investigation of diheteroaryl thioethers as effective corrosion inhibitors for mild steel in 1 M HCl [J]. J. Taiwan Inst. Chem. Eng., 2016, 58: 127
[19] Li X X, Yang W Z. Inhibition of 1-propyl-2-methyl-3-alkyl benzimidazole on Q235 steel in HCl solution [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 168
[19] (李相旭, 杨文忠. 盐酸介质中1-丙基-2-甲基-3-烷基苯并咪唑盐对Q235钢的缓蚀作用 [J]. 中国腐蚀与防护学报, 2012, 32: 168)
[20] Hu Q. Study on natural plants’ extracts as eco-friendly corrosion inhibitors [D]. Wuhan: Huazhong University of Science and Technology, 2014
[20] (胡琴. 天然植物型缓蚀剂的研究 [D]. 武汉: 华中科技大学, 2014)
[21] Li X H, Deng S D, Fu H, et al. Synergistic inhibition effects of bamboo leaf extract/major components and iodide ion on the corrosion of steel in H3PO4 solution [J]. Corros. Sci., 2014, 78: 29
[22] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008
[22] (曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008)
[23] Da Rocha J C, Da Cunha Ponciano Gomes J A, D'Elia E. Corrosion inhibition of carbon steel in hydrochloric acid solution by fruit peel aqueous extracts [J]. Corros. Sci., 2010, 52: 2341
[24] Chen W, Guan C P, Yang S M, et al. Corrosion inhibition of equisetum ramosissimum extractive for carbon steel in hydrochloric acid solution [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 177
[24] (陈文, 管春平, 杨申明等. 节节草提取物在盐酸介质中对碳钢的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2016, 36: 177)
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[4] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[5] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[6] 焦明远, 金伟良, 毛江鸿, 李腾, 夏晋. 电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[7] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[8] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[9] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[10] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[11] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[12] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[13] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[14] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[15] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.