Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (3): 253-259    DOI: 10.11902/1005.4537.2018.100
  研究报告 本期目录 | 过刊浏览 |
YG15硬质合金电化学腐蚀机理研究
施远,金洙吉(),姜冠楠,刘作涛,周忠正,王泽北
大连理工大学机械工程学院 大连 116024
Electrochemical Corrosion of YG15 Cemented Carbide
Yuan SHI,Zhuji JIN(),Guannan JIANG,Zuotao LIU,Zhongzheng ZHOU,Zebei WANG
School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
全文: PDF(6597 KB)   HTML
摘要: 

针对电解磨削加工YG15硬质合金中的电化学腐蚀现象,使用3 mol/L的NaNO3电解液,采用动电位和恒电位腐蚀相结合的实验方法进行机理研究。结果表明,在NaNO3电解液中YG15硬质合金的电化学腐蚀是WC和Co共同被氧化;且当阳极电位过高时,结合剂金属Co的溶解速率变大,材料表面生成的腐蚀产物与基体之间结合力较低,易发生脱落;同时产生电流波动现象,材料表面腐蚀严重。在实际加工中,应尽量避免阳极电位超过3.5 VAg/AgCl。通过EDS检测和XPS分析确定腐蚀产物成分为WO3。选择合理的电压参数会对电解磨削中增大材料的去除率有较大的帮助。

关键词 碳化钨硬质合金电解磨削动电位恒电位电化学腐蚀    
Abstract

Cemented carbide is widely used in many fields because of its good properties. However, it is difficult to be processed with traditional machining methods. Electrochemical grinding is a kind of non-traditional method which combines electrochemical machining and mechanical grinding with great processing quality and high removal rate. In this paper, electrochemical corrosion mechanism of YG15 cemented carbide in electrolyte of 3 mol/L NaNO3 is focused by means of potentiodynamic- and potentiostatic-curve measurements. Results show that the electrochemical corrosion of YG15 cemented carbide in NaNO3 electrolyte is the result of co-oxidation corrosion of WC and Co. Corrosion phenomena vary a lot under different potentials. Moreover, when the anode potential is high, the dissolution rate of metal Co (which acts as the binder) increases, leading to the decreasing adhesion of the formed corrosion product scale to the substrate, which makes the corrosion product scale is prone to spall off. In addition, the corrosion dissolution of the substrate and the spall off for the corrosion product scale may cause the current oscillations on curves of corrosion current vs time, which leads to serious corrosion and even destruction of the substrate surface. Therefore, the anode potential should not excess 3.5 VAg/AgCl so that to avoid the above mentioned harmful event during electrochemical grinding. The composition of the corrosion layer is determined to be tungsten oxides (which is mainly WO3) by energy dispersive spectroscope and X-ray photoelectron spectroscope. Reasonable voltage parameters could help increase the removal rate of materials a lot in electrochemical grinding.

Key wordstungsten carbide    electrochemical grinding    potentiodynamic curve    potentiostatic curve    electrochemical corrosion
收稿日期: 2018-07-11     
ZTFLH:  TQ150.1  
基金资助:国家重点基础研究发展计划(2015CB057304);基础科研科学挑战计划(JCKY2016212A506-0107);基础科研科学挑战计划(JCKY2016212A506-0103);国家创新研究群体科学基金(51621064)
通讯作者: 金洙吉     E-mail: kimsg@dlut.edu.cn
Corresponding author: Zhuji JIN     E-mail: kimsg@dlut.edu.cn
作者简介: 施远,男,1994年生,硕士生

引用本文:

施远,金洙吉,姜冠楠,刘作涛,周忠正,王泽北. YG15硬质合金电化学腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
Yuan SHI, Zhuji JIN, Guannan JIANG, Zuotao LIU, Zhongzheng ZHOU, Zebei WANG. Electrochemical Corrosion of YG15 Cemented Carbide. Journal of Chinese Society for Corrosion and protection, 2019, 39(3): 253-259.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.100      或      https://www.jcscp.org/CN/Y2019/V39/I3/253

图1  电解池及三电极体系原理图
图2  YG15硬质合金在3 mol/L NaNO3电解液中的阳极动电位极化曲线 (扫描速率2 mV/s)
图3  YG15硬质合金在3 mol/L NaNO3电解液中不同阳极电位下的电流-时间曲线
图4  阳极电位4 VAg/AgC时YG15硬质合金在3 mol/L NaNO3电解液中不同极化时刻的反应过程照片
图5  YG15硬质合金在3 mol/L NaNO3电解液中不同阳极电位下处理后试样表面的SEM像
Potential / VAg/AgClWCo
072.189.99
173.591.36
270.80---
371.13---
471.86---
表1  不同电位下极化表面的EDS结果
图6  YG15硬质合金在3 mol/L NaNO3电解液中腐蚀产物的XPS谱
图7  阳极电位为4 VAg/AgCl时YG15硬质合金在3 mol/L NaNO3电解液中的电流-时间曲线
[1] Padmakumar M, Guruprasath J, Achuthan P, et al. Investigation of phase structure of cobalt and its effect in WC-Co cemented carbides before and after deep cryogenic treatment [J]. Int. J. Refract. Met. Hard Mater., 2018, 74: 87
[2] Gao X J, Man P, Wang H D, et al. Development of WC cement preparation technology [J]. Bull. Chin. Ceram. Soc., 2013, 32: 71
[2] (高晓菊, 满鹏, 汪海东, .等. 碳化钨硬质合金制备技术研究进展 [J]. 硅酸盐通报, 2013, 32: 71)
[3] Li H S, Niu S, Zhang Q L, et al. Investigation of material removal in inner-jet electrochemical grinding of GH4169 alloy [J]. Sci. Rep., 2017, 7: 3482
[4] Xu Y, Gan W M, Zhu P X. Experimental research on NC electrochemical grinding for ruled surface of integral impeller [J]. Appl. Mech. Mater., 2012, 271/272: 394
[5] Tehrani A F, Atkinson J. Overcut in pulsed electrochemical grinding [J]. Proc. Inst. Mech. Eng., 2000, 214B: 259
[6] He Q X, Jin Z J, Jiang G N, et al. The investigation on electrochemical denatured layer of 304 stainless steel [J]. Mater. Manuf. Process., 2018, 33: 1661
[7] Ye E K, Qu N S, Zhu D. Experimental investigation on electrochemical grinding of GH4169 [J]. Mach. Build. Autom., 2016, 45(6): 24
[7] (叶而康, 曲宁松, 朱荻. GH4169电解磨削加工试验研究 [J]. 机械制造与自动化, 2016, 45(6): 24)
[8] Zheng K L. Study on CNC electrolysis grinding of cobalt-base talide corrugated roller [J]. Manuf. Technol. Mach. Tool, 2007, (7): 108
[8] (郑开陆. 钴基碳化钨瓦楞辊数控电解磨削的研究 [J]. 制造技术与机床, 2007, (7): 108)
[9] Qu N S, Zhang Q L, Fang X L, et al. Experimental investigation on electrochemical grinding of inconel 718 [J]. Procedia CIRP, 2015, 35: 16
[10] Sun Y A, Li X H, Zhang Y Q. Electrolytic grinding for hard metals [J]. Bearing, 2002, (2): 18
[10] (孙永安, 李县辉, 张永乾. 硬质合金的电解磨削加工 [J]. 轴承, 2002, (2): 18)
[11] Pang G B, Xin K K, Cai X, et al. Experimental study of surface topography characteristics of YT15 cemented carbide by electrochemical machining [J]. J. Dalian Univ. Technol., 2017, 57: 367
[11] (庞桂兵, 辛开开, 蔡晓等. 电化学加工YT15硬质合金表面形貌特征实验研究 [J]. 大连理工大学学报, 2017, 57: 367)
[12] Qin Q, Fang Y L, Li J X, et al. Analysis of influencing factors on electrochemical corrosion behavior of cemented carbides [J]. Rare Met. Cement Carbides, 2017, 45(5): 74
[12] (秦琴, 方云龙, 李京筱等. 硬质合金电化学腐蚀行为的影响因素分析 [J]. 稀有金属与硬质合金, 2017, 45(5): 74)
[13] Wan Q L, Zhang L, Ke R X, et al. Effect of anions on electrochemical corrosion behavior and corrosion mechanism of WC-Co cemented carbide [J]. China Tungsten Ind., 2015, 30(1): 61
[13] (万庆磊, 张立, 柯荣现等. 阴离子介质对WC-10Co合金电化学腐蚀行为的影响 [J]. 中国钨业, 2015, 30(1): 61)
[14] Natsu W, Kurahata D. Observation of workpiece surface in ECM process of WC alloy micro-pin with bipolar pulses [J]. Int. J. Electr. Mach., 2016, 21: 31
[15] Kellner F J J, Hildebrand H, Virtanen S. Effect of WC grain size on the corrosion behavior of WC-Co based hardmetals in alkaline solutions [J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 806
[16] Hochstrasser S, Mueller Y, Latkoczy C, et al. Analytical characterization of the corrosion mechanisms of WC-Co by electrochemical methods and inductively coupled plasma mass spectroscopy [J]. Corros. Sci., 2007, 49: 2002
[17] Levinger R, Malkin S. Electrochemical grinding of WC-Co cemented carbides [J]. J. Eng. Ind., 1979, 101: 285
[18] Goto A, Nakata A, Saito N. Study on electrochemical machining of sintered carbide [J]. Procedia CIRP, 2016, 42: 402
[19] Li D. Electrochemical Theory [M]. 3rd Ed. Beijing: Beihang University Press, 2008: 278
[19] (李荻. 电化学原理 [M]. 第3版. 北京: 北京航空航天大学出版社, 2008: 278)
[20] Gui Y, Gao Y. Progress of research on performance of passive films of stainless steels [J]. Spec. Steel, 2011, 32(3): 20
[20] (桂艳, 高岩. 不锈钢表面钝化膜特性的研究进展 [J]. 特殊钢, 2011, 32(3): 20)
[21] Biloen P, Pott G T. X-ray photoelectron spectroscopy study of supported tungsten oxide [J]. J. Catal., 1973, 30: 169
[22] Katrib A, Hemming F, Wehrer P, et al. The multi-surface structure and catalytic properties of partially reduced WO3, WO2 and WC+O2 or W+O2 as characterized by XPS [J]. J. Electron Spectrosc. Relat. Phenom. 1995, 76: 195
[23] Zhang J X, Zhang G Z, Zhang L P, et al. XPS study on WC bulk in-situ synthesized through directly carbonized tungsten oxide by SPS [J]. Rare Met. Mater. Eng., 2006, 35: 937
[23] (褚张久兴, 张国珍, 张利平等. 氧化钨/碳SPS原位合成WC硬质合金的XPS研究 [J]. 稀有金属材料与工程, 2006, 35: 937)
[24] Li J P, Ding C G, Li Y, et al. Effects of sintering temperatures on performance of WC-15%Co coarse-grained cemented carbide by sinter-HIP [J]. Cement Carbide, 2016, 33: 33
[24] (李金普, 丁存光, 李一等. 低压烧结温度对YG15粗晶硬质合金性能的影响 [J]. 硬质合金, 2016, 33: 33)
[25] Cao F G. Electrochemical Machining [M]. Beijing: Chemical Industry Press, 2014: 104
[25] (曹凤国. 电化学加工 [M]. 北京: 化学工业出版社, 2014: 104)
[26] Chen K H, Zou D, Li Y X. Advance in the study of passivation and pseudopassivation behaviours of cemented carbides [J]. Cement Carbide, 2007, 24: 181
[26] (陈康华, 邹丹, 李詠侠. 硬质合金钝化与伪钝化行为的研究进展 [J]. 硬质合金, 2007, 24: 181)
[27] Qun L. Electrolytic grinding of WC-Co cemented carbide [J]. Shanghai Machine, 1965, (11): 9
[27] (群力. 电解磨削碳化钨-钴型硬质合金 [J]. 上海机械, 1965, (11): 9)
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[5] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[6] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[7] 张志英, 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏. 铜基非晶合金复合材料在NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[8] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[9] 焦明远, 金伟良, 毛江鸿, 李腾, 夏晋. 电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[10] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[11] 隋佳利,李相波,林志峰,詹天荣. 两种热喷涂锌铝涂层在低温海水介质中防腐性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 471-475.
[12] 宋博强,陈旭,马贵阳,刘睿. SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[13] 汪家梅,陆辉,段振刚,张乐福,孟凡江,徐雪莲. 模拟压水堆二回路水环境中温度对690合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
[14] 彭新元,周贤良,华小珍. 晶粒尺寸对316LN不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[15] 张宁,孙虎元,孙立娟,刘栓. X80管线钢在滨海滩涂土壤模拟液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.