Please wait a minute...
中国腐蚀与防护学报  2000, Vol. 20 Issue (6): 355-360     
  研究报告 本期目录 | 过刊浏览 |
316L不锈钢微动磨蚀过程表面钝化膜自修复行为研究
闫建中;吴荫顺;李久青
北京科技大学腐蚀与防护中心 腐蚀、磨蚀与表面技术开放研究实验室
REPASSIVATION BEHAVIOR of 316lSTAINLESS STEEL IN FRETTING WEAR AND CORROSION PROCESS
Jianzhong Yan;;;
北京科技大学腐蚀与防护中心 腐蚀、磨蚀与表面技术开放研究实验室
全文: PDF(197 KB)  
摘要: 采用球平面接触设备,结轧制固溶316L不锈钢在不同NaCl溶液微动过程中,表面钝化膜的自修复行为进行了研究,讨论了溶液腐蚀特性及缝隙腐蚀行为对微动过程的影响.结果表明,溶液腐蚀特性的改变引起材料钝化膜自修复行为的差异,但不显著.在去离子水溶液中,316L不锈钢表面钝化膜保持了较高的自修复能力,稳定阶段表面钝化膜自修复约占平衡态下钝化膜厚度的17%,说明316L不锈钢表面钝化膜在微动过程并不能长期有效地保护材料免受腐蚀损伤.
关键词 微动316L不锈钢钝化膜自修复行为    
Abstract:Repassivation behavior behavior of 316Lstainless steel in fretting has been studied in different NaCl solutions.And the effect of crevice corrosion occurring during fretting process had been discussed.The results showed that different solutions resulted in different repassivation behavior.But the difference of repassivation behaviors in different solutions ras not remarkable:in pH10.0(0.9% NaCl)solution,repassivating process could last for about 5×10 4 cycles;while fretting in other corrosive solutions,no more repassivation process took place after 4×10 4 cycles.When fretting was carried out in deionized water the material had better repassivation ability. The growing film might take up 17 percent of passive film in static condition.The evidence suggested that passive film could not protect the material from corrosion damage effectively in fretting
Key wordsfretting    316Lstainless steel    repassivation behavior of passive film
收稿日期: 1999-11-08     
ZTFLH:  TG113.2  
通讯作者: 闫建中   
Corresponding author: Jianzhong Yan   

引用本文:

闫建中; 吴荫顺; 李久青 . 316L不锈钢微动磨蚀过程表面钝化膜自修复行为研究[J]. 中国腐蚀与防护学报, 2000, 20(6): 355-360 .
Jianzhong Yan. REPASSIVATION BEHAVIOR of 316lSTAINLESS STEEL IN FRETTING WEAR AND CORROSION PROCESS. J Chin Soc Corr Pro, 2000, 20(6): 355-360 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2000/V20/I6/355

[ 1 ] Waterhouse R B. Fretting Corrosion[ M]. New Yord: Pergamon Press, 1972
[2] Waterhouse R B. Fretting Fatigue[ M]. London: Appl. Sci. Publ. LTD, 1981
[ 3 ] Hoeppner D W, Chandrasekaran V. Fretting in orthopaedic implants: a review[J ]. Wear, 1994, (173): 189
[4] Pohler O E M. Morphological and electrochemical studies of fatigue and corrosion fatigue on stainless steel 316L and a cobaltthey in air and ringe's solution[D]. Columbus, Ohio: The Ohio State University, 1979
[5 ] Solar R J. Corrosion resistance of titanium surgical implant alloys: A Review[A]. In: Syreet B C, Acharya A, eds. Corrosion anddegradation of implant materials, ASTM STP684[C], Philadelphia, 1979, 259
[6] Kruger J. Fundamental aspects of the corrosion of metallic implants [ A]. In: Syrett B C, Acharya A, eds. Corrosion anddegradation of implant materials, ASTM STP684[C], Philadelphia, 1979, 107
[ 7] Kuhn A T. Electrochemical corrosion of metallic biomaterials[J ]. Biomaterials, 1981, (2): 68
[ 8] Katharine Merritt, Staziley A Brown. Biological effect of corrosion products from metals[A]. In: Fraker A C, Griffin C D, eds.Corrosion and degradation of implant materials ASTM STP859[C]. Philadelphia, 1985, 195
[9] Syrett B C, David E E. Crevice corrosion of implant alloys-A comparison of in-vital and in vivo studies[A]. In Syrett B C,Acharya A, eds. Cohesion and degradation of implant materials, ASTM STP684 [C]. Philadelphia, 1979, 229
[10] 闫建中,吴蔚顺,张琳,李久青, 316L不锈钢在0.9%NaCl溶液微动过程中局部腐蚀作用研究,中国腐蚀与防护学报, 2000,20(4):237
[ 11] Swallow P J. University of Notingham, in: Fretting Corrosion[ M ], by Waterhouse R B, New York: Pergamon Press, 1972, 192
[ 12] Godet M. The third-body approach: A mechanical view of wear[J ]. Wear, 1984, (100):437
[1] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[2] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[3] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[4] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[5] 刘静,李晓禄,朱崇伟,张涛,曾冠鑫,孟国哲,邵亚薇. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[6] 丁祥彬,孙华,俞国军,周兴泰. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.
[7] 张志明,彭青娇,王俭秋,韩恩厚,柯伟. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[8] 陈宇, 陈旭, 刘彤, 王冠夫, 王彦亮. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 137-143.
[9] 常钦鹏, 陈友媛, 宋芳, 彭涛. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[10] 聂鸳鸳, 段继周, 杜敏, 侯保荣. 天然海水中NaN3对316L不锈钢表面微生物膜催化阴极氧还原的影响[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
[11] 檀玉, 梁可心, 张胜寒. 光电化学法研究316L不锈钢在高温水中生成氧化膜的半导体性质[J]. 中国腐蚀与防护学报, 2013, 33(6): 491-495.
[12] 杜向前, 段继周, 翟晓凡, 栾鑫, 张杰, 侯保荣. 铁还原细菌Shewanella algae生物膜对316L不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
[13] 彭青姣,张志明,王俭秋,韩恩厚,柯伟. 溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 217-222.
[14] 刘彬,段继周,侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53.
[15] 郭金彪,陈阵,王璐,张婷. 少量硝酸对316L和Hastelloy C合金在循环废酸中腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2011, 31(2): 121-124.