Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (1): 31-38    DOI: 10.11902/1005.4537.2015.049
  本期目录 | 过刊浏览 |
pH值对Q235钢在模拟土壤中腐蚀行为的影响
黄涛1,陈小平1(),王向东1,米丰毅1,刘芮2,李向阳1
1. 钢铁研究总院工程用钢研究所 北京 100081
2. 昆明理工大学材料科学与工程学院 昆明 650093
Effect of pH Value on Corrosion Behavior of Q235 Steel in an Artificial Soil
Tao HUANG1,Xiaoping CHEN1(),Xiangdong WANG1,Fengyi MI1,Rui LIU2,Xiangyang LI1
1. Division of Engineering Steel,Central Iron and Steel Research Institute, Beijing 100081, China
2. School of Material Science and Engineering, Kunming University of Science and Technology,Kunming 650093, China
全文: PDF(3413 KB)   HTML
摘要: 

采用一种新型的土壤腐蚀评价方法----硅藻土模拟土壤实验室加速腐蚀法,进行了Q235钢在不同pH值模拟土壤腐蚀介质中的埋片20 d的腐蚀实验.结果表明:随着模拟土壤的pH值从4.5升高至8.5,Q235钢的腐蚀速率持续下降,这一规律与已有的实际土壤下的腐蚀规律相同,而试样表面由较严重的全面腐蚀转变为轻微的局部腐蚀;酸性模拟土壤条件与碱性条件下的腐蚀产物组成一致,主要是α-FeOOH,Fe3O4,γ-FeOOH和Fe2O3,但α-FeOOH和Fe3O4含量差别大,碱性条件下腐蚀产物中Fe3O4的含量上升,α-FeOOH的含量下降.

关键词 土壤腐蚀模拟土壤Q235钢pH值    
Abstract

Coupons of the grounding material Q235 steel were buried in an artificial soil of diatomite with different pH values for 20 d, and then the corrosion behavior of the steel was examined. The results indicated that the pH value of the artificial soil had a great effect on the corrosion behavior of Q235 steel. With the increasing of pH value, the corrosion rate of the steel in the artificial soil decreased, which accorded fairly well with that in the actual soil, correspondingly the corrosion type of the coupons turned from rather serious uniform corrosion to slight local corrosion. The corrosion products formed in acidic artificial soil are consistent with those in an alkaline artificial soil, they all composed mainly of α-FeOOH, Fe3O4, γ-FeOOH and Fe2O3, however the products in the late case contained higher Fe3O4 and less α-FeOOH.

Key wordssoil corrosion    artificial soil    Q235 steel    pH value
    
基金资助:陕西电力科学研究院项目 (2012037) 资助

引用本文:

黄涛,陈小平,王向东,米丰毅,刘芮,李向阳. pH值对Q235钢在模拟土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38.
Tao HUANG, Xiaoping CHEN, Xiangdong WANG, Fengyi MI, Rui LIU, Xiangyang LI. Effect of pH Value on Corrosion Behavior of Q235 Steel in an Artificial Soil. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 31-38.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.049      或      https://www.jcscp.org/CN/Y2016/V36/I1/31

图1  Q235钢在不同pH值的模拟土壤条件下腐蚀不同时间的腐蚀宏观形貌
图2  Q235 钢在不同pH值的模拟土壤条件下的SEM像
图3  Q235钢在不同pH值条件下腐蚀产物的EDS结果
Time / d pH Rust coverage / % Mass loss / g Max-pitting depth / mm
5 4.5 67 0.1756 0.01~0.05
5.5 17 0.0942 Minor
8.5 16 0.0631 Minor
20 4.5 86 0.9677 0.30~0.35
5.5 49 0.5836 0.25~0.30
8.5 25 0.2826 0.05~0.10
表1  Q235钢在不同pH值的模拟土壤条件下的腐蚀产物覆盖率,腐蚀失重和最大蚀孔深
图4  Q235钢在不同pH值的模拟土壤条件下腐蚀产物的XRD谱
图5  Q235钢在不同pH值的模拟土壤条件下各腐蚀产物的相对含量
[1] Li C L, Qu Z Y, Wang X Y, et al.Characteristic assessment of key factors of soil corrosivity[J]. J. Univ. Sci. Technol. Beijing, 1996, 18(2): 174
[1] (李长荣, 屈祖玉, 汪轩义等. 土壤腐蚀性关键因素的评价与选取[J]. 北京科技大学学报, 1996, 18(2): 174)
[2] Jin M H, Huang H T.Relationship between corrosion rate of metal and resistivity in soil[J]. J. Huazhong Univ. Sci. Technol., 2001, 29(5): 103
[2] (金名惠, 黄辉桃. 金属材料在土壤中的腐蚀速度与土壤电阻率[J]. 华中科技大学学报, 2001, 29(5): 103)
[3] Liu Z Y, Zhai G L, Li X G, et al.Effect of deteriorated microstructures on stress corrosion cracking of X70 pipeline steel in acidic soil environment[J]. J. Univ. Sci. Technol. Beijing, 2008, 15(6): 707
[4] Wu Y H, Liu T M, Luo S X, et al.Corrosion characteristics of Q235 steel in simulated Yingtan soil solutions[J]. Materialwiss. Werkstofftech., 2010, 41(3): 142
[5] Singh J K, Singh D D N. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH[J]. Corros. Sci., 2012, 56: 129
[6] National Gateway of Soil Corrosion Test. Soil Corrosion Test Method of Materials [M]. Beijing: Science Press, 1990
[6] (全国土壤腐蚀试验网站编. 材料土壤腐蚀试验方法 [M]. 北京: 科学出版社, 1990)
[7] Liang P, Du C W, Li X G.Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution[J]. Mater. Design, 2009, 30(5): 1712
[8] Xi Y J, Sun C, Li H X, et al.Acidic soil corrosion[J]. Corros. Sci. Prot. Technol., 2002, 14(4): 247
[8] (席艳君, 孙成, 李洪锡等. 酸性土壤腐蚀[J]. 腐蚀科学与防护技术, 2002, 14(4): 247)
[9] Nie X H, Li X G, Li Y L, et al.Simulative and accelerative experimentation of carbon steel corrosion in soil[J]. Mater. Eng., 2012,(1): 59
[9] (聂向晖, 李晓刚, 李云龙等. 碳钢的土壤腐蚀模拟加速实验[J]. 材料工程, 2012, (1): 59)
[10] Shi Y H, Liang P.Corrosion behavior of Q345 steel in five saturated soil solutions in fushun region[J]. Corros. Sci. Prot. Technol., 2012, 24(6): 473
[10] (史艳华, 梁平. Q345钢在抚顺地区土壤饱和溶液中的腐蚀行为[J]. 腐蚀科学与防护技术, 2012, 24(6): 473)
[11] Nie X H, Li Y L, Li J K, et al.Morphology, products and corrosion mechanism analysis of Q235 carbon steel in sea-shore salty soil[J]. Mater. Eng., 2010, (8): 24
[11] (聂向晖, 李云龙, 李记科等. Q235碳钢在滨海盐土中的腐蚀形貌,产物及机理分析[J]. 材料工程, 2010, (8): 24)
[12] Liu T M, Wu Y H, Luo S X, et al.Effect of soil compositions on the electrochemical corrosion behavior of carbon steel in simulated soil solution[J]. Materialwiss. Werkstofftech., 2010, 41(4): 228
[13] Gao L, Lv W L, Cao J L.Corrosion behavior of underground heat-supply pipeline steel in simulated solution of soil at different locations of Beijing city[J]. Mater. Prot., 2012, 45(6): 54
[13] (高磊, 吕维玲, 曹江利. 埋地热力管线材Q235钢在北京土壤模拟溶液中的腐蚀行为[J]. 材料保护, 2012, 45(6): 54)
[14] Zhu M, Du C W, Li X G, et al.Galvanic corrosion behavior of copper-clad steel bars with unclad two-end faces[J]. Corros. Sci. Prot. Technol., 2013, 25(4): 265
[14] (朱敏, 杜翠薇, 李晓刚等. 铜包钢在截面暴露条件下的电偶腐蚀行为研究[J]. 腐蚀科学与防护技术, 2013, 25(4): 265)
[15] Jiang Y Z, Jia S Y.Exploitation application existing conditions and evolution of diatiomite[J]. Non-ferrous Mining Metall., 2011, 27(5): 31
[15] (姜玉芝, 贾嵩阳. 硅藻土的国内外开发应用现状及进展[J]. 有色矿冶, 2011, 27(5): 31)
[16] Su H, Yan A J, Chen X P, et al.A accelerated corrosion test method of simulation soil corrosion process [P]. China: 201310259811.9, 2013
[16] (苏航, 闫爱军, 陈小平等. 一种模拟土壤腐蚀过程的加速腐蚀测试方法 [P]. 中国: 201310259811.9, 2013)
[17] Huang T, Yan A J, Chen X P, et al.Influence of water content on corrosion behavior of Q235 steel in an artificial soil[J]. Corros. Sci. Prot. Technol., 2014, 26(6): 511
[17] (黄涛, 闫爱军, 陈小平等. 含水率对Q235钢在模拟酸性土壤中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2014, 26(6): 511)
[18] Huang T, Chen X P, Wang X D, et al.Indoor accelerated corrosion test method for steel in simulated acidic soil environment[J]. Mater. Prot., 2014, 47(10): 58
[18] (黄涛, 陈小平, 王向东等. 实验室模拟酸性土壤中钢材的加速腐蚀[J]. 材料保护, 2014, 47(10): 58)
[19] Liu Z Y, Zhai G L, Du C W, et al.SCC of X70 pipeline steel in Yingtan acid soil environment[J]. J. Sichuan Univ.(Eng. Sci. Ed.), 2008, 40(2): 76
[19] (刘智勇, 翟国丽, 杜翠薇等. X70钢在鹰潭酸性土壤中的应力腐蚀行为[J]. 四川大学学报 (工程科学版), 2008, 40(2): 76)
[20] Lin Y Z, Yang D J.Corrosion and Corrosion Control Theory [M]. Beijing: China Petrochemical Press, 2007
[20] (林玉珍, 杨德钧. 腐蚀和腐蚀控制原理 [M]. 北京: 中国石化出版社, 2007)
[21] Wu Y H, Liu T M, Sun C.Effects of simulated acid rain on corrosion behaviour of Q235 steel in acidic soil[J]. Corros. Eng. Sci. Technol., 2010, 45(2): 136
[22] Gerwin W, Baumhauer R.Effect of soil parameters on the corrosion of archaeological metal finds[J]. Geoderma, 2000, 96(1/2): 163
[23] Tamura H.The role of rusts in corrosion and corrosion protection of iron and steel[J]. Corros. Sci., 2008, 50: 1872
[24] Yan M, Sun C, Xu J, et al.Role of Fe oxides in corrosion of pipeline steel in a red clay soil[J]. Corros. Sci., 2014, 80: 309
[25] Asami K, Kikuchi M.In-depth distribution of rust on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years[J]. Corros. Sci., 2003, 45: 2671
[26] Weissenrieder J, Leygraf C.In situ studies of filiform corrosion of iron[J]. J. Electrochem. Soc., 2004, 151(3): B165
[27] Neff D, Dillmann P, Bellot-Gurlet L.Corrosion of iron archacological artefacts in soil: Characterization of the corrosion system[J].Corros. Sci., 2005, 47(2): 515
[28] Jia S Y, Zhang B, Sun C, et al.Corrosion regulation of Q235 steel in contaminated soils with different pH values[J]. Corros. Prot., 2009, 30(5): 300
[28] (贾思洋, 张波, 孙成等. Q235钢在不同pH值污染土壤中的腐蚀规律[J]. 腐蚀与防护, 2009, 30(5): 300)
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 朱亦晨,刘光明,刘欣,裴锋,田旭,师超. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[3] 朱泽洁,张勤号,刘盼,张鉴清,曹发和. 微型电化学传感器在界面微区pH值监测中的应用[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.
[4] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[5] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[6] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[7] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[8] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[9] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[10] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[11] 刘栓,周开河,方云辉,徐孝忠,江炯,郭小平,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响I—Cl-浓度和pH值[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[12] 郑珉,黄彦良,西方笃,路东柱,张杰,王秀通,温娟,李玉红,刘月妙. Q235钢在甘肃北山地区地下水模拟液及高压实膨润土环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(5): 398-406.
[13] 李阳恒,左禹,唐聿明,赵旭辉. 应变作用下Q235碳钢在NaHCO3+NaCl溶液中的孔蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.
[14] 陈文,管春平,杨申明,胡小安. 节节草提取物在盐酸介质中对碳钢的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(2): 177-184.
[15] 董洋洋, 黄峰, 程攀, 胡骞, 刘静. X65 MS耐酸管线钢在H2S环境中腐蚀产物膜的演变[J]. 中国腐蚀与防护学报, 2015, 35(5): 386-392.