Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (5): 451-458    DOI: 10.11902/1005.4537.2013.247
  本期目录 | 过刊浏览 |
WBE技术研究水线区Q235碳钢腐蚀
陈亚林1,2,3, 张伟2,3(), 王伟1, 王佳1,4, 王琦1, 蔡光旭1
1. 中国海洋大学化学化工学院 青岛 266100
2. 青岛海洋腐蚀研究所 青岛 266071
3. 青岛钢研纳克检测防护技术有限公司 青岛 266071
4. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
Evaluation of Water-line Area Corrosion for Q235 Steel by WBE Technique
CHEN Yalin1,2,3, ZHANG Wei2,3(), WANG Wei1, WANG Jia1,4, WANG Qi1, CAI Guangxu1
1. College of Chemistry and Chemical Engineering,Ocean University of China, Qingdao 266100, China
2. Qingdao Institute of Marine Corrosion, Qingdao 266071, China
3. NCS Testing Technology Co., Ltd, Qingdao 266071, China
4. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(2803 KB)   HTML
摘要: 

应用阵列电极技术研究了Q235碳钢在3.5%NaCl溶液中的电流分布,并根据电流分布变化过程探究了腐蚀机理。结果表明,浸泡起始阶段,自水线向下,阳极电流呈逐渐增大趋势,表现出宏观氧浓差电池的特征,但此时阴极与阳极电流交叉分布。水线腐蚀发展阶段,形成了以水线附近为阴极,水线下为阳极的氧浓差电池。水线上阴极反应速率的不断增加,推动水线下金属腐蚀由水线下逐渐向水线处扩展,加速了整个金属的腐蚀反应速率。水线腐蚀稳定阶段,水线上成为电极表面主要的阴极反应区域,腐蚀速率处于稳定状态。阵列电极测量技术可以提供整个水线区的电流分布及其变化信息,弥补了传统片状电极的不足,为水线腐蚀研究提供了有效的技术手段。

关键词 水线腐蚀阵列电极金属腐蚀电流分布    
Abstract

The water-line area corrosion of carbon steel in 3.5%NaCl solution was studied by me- ans of wire beam electrode (WBE) technique. The corrosion current distribution was regularly measured over a period of 40 d. In the initial stage, it was found that, down from the waterline, the anodic current increased gradually. This indicated that an oxygen concentration cell had been formed already. But the cathode region and anode region were mixed up in this stage. With the progress of the corrosion process, the cathode region was located near the waterline and the anode region was located beneath the cathode region. As the cathodic reaction above the waterline was speeding up, the corrosion region extended from the lower portion of the electrode upward to the waterline and thus the corrosion rate of whole electrode increased. In the smooth stage of corrosion, the main cathode region was located above the waterline and the corrosion rate became stable. This work confirms the applicability of the WBE method for the study of water-line corrosion. This method can especially provide information concerning the evolution of the corrosion current distribution of the electrode, which can not be acquired by the traditional technique with a bulk electrode of long steel strip.

Key wordswater-line corrosion    wire beam electrode    corrosion of metal    current distribution
    
ZTFLH:  O646  
基金资助:国家自然科学基金项目 (21203034) 资助
作者简介: null

陈亚林,男,1988年生,硕士生,研究方向为腐蚀电化学

引用本文:

陈亚林, 张伟, 王伟, 王佳, 王琦, 蔡光旭. WBE技术研究水线区Q235碳钢腐蚀[J]. 中国腐蚀与防护学报, 2014, 34(5): 451-458.
Yalin CHEN, Wei ZHANG, Wei WANG, Jia WANG, Qi WANG, Guangxu CAI. Evaluation of Water-line Area Corrosion for Q235 Steel by WBE Technique. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 451-458.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.247      或      https://www.jcscp.org/CN/Y2014/V34/I5/451

图1  WBE表面照片和水线附近剖面示意图
图2  浸泡不同时间WBE表面电流密度的分布图
图3  浸泡不同时间单行电流密度矢量和
图4  电极表面阳极电流密度随浸泡时间的变化
图5  浸泡不同时间WBE表面的腐蚀形貌
[1] Evans U R,translated by Hua B D. The Corrosion and Oxidation of Metals[M]. Beijing: Mechanical Industry Press, 1976: 70-75
[1] (Evans U R著,华宝定译. 金属腐蚀与氧化[M]. 北京: 机械工业出版社, 1976: 70-75)
[2] Evans U R. Report on corrosion research work at cambridge university interrupted by the outbreak of war[J]. J. Iron Steel Inst., 1940, 141: 219-234
[3] Tomashov N D. The Theory of Corrosion and Protection of Metals[M]. New York: MacMillan, 1966
[4] Jeffrey R, Melchers R E.Corrosion of vertical mild steel strips in seawater[J]. Corros. Sci., 2009, 51(10): 2291-2297
[5] Wang D. Study on effect of inhibitors on localized corrosion of metal using the Wire-Beam Electrode [D]. Changsha: Hunan University, 2005
[5] (王丹.用丝束电极研究缓蚀剂对金属局部腐蚀的影响 [D]. 长沙: 湖南大学, 2005)
[6] Tan Y, Bailey S, Kinsella B. Mapping non-uniform corrosion using the wire beam electrode method. III. Water-line corrosion[J]. Corros. Sci., 2001, 43(10): 1931-1937
[7] Lin C J, Zhuo X D, Chen J D, et al.Corrosion potential imaging at interface of polymeric coating/metal by array electrode technique[J]. J. Chin. Soc. Corros. Prot., 1997, 17(1): 9-13
[7] (林昌健, 卓向东, 陈纪东等.阵列电极法测量聚合物/金属界面电位分布[J]. 中国腐蚀与防护学报, 1997, 17(1): 9-13)
[8] Zhang X, Wang W, Wang J. Characterization of electrochemical heterogeneity of interface of an artificial biofilm/metal by means of a wire beam electrode[J]. Corros. Sci. Prot. Technol., 2009, 21: 242-244
[8] (张霞, 王伟, 王佳. 利用丝束电极技术研究模拟微生物膜/金属界面的电化学不均匀性[J]. 腐蚀科学与防护技术, 2009, 21: 242-244)
[9] Wang W, Zhang X, Wang J. The influence of local glucose oxidase activity on the potentialrrent distribution on mild steel: a study by the wire beam electrode method[J]. Electrochim. Acta, 2009, 54: 5598-5604
[10] Zhang X, Wang J, Wang W. A novel device for the wire beam electrode method and its application in the ennoblement study[J]. Corros. Sci., 2009, 51(6): 1475-1479
[11] Kong D, Wang Y, Zhang W, et al. Correlation between electrochemical impedance and current distribution of carbon steel under organic coating[J]. Mater. Corros., 2012, 63: 475-480
[12] Zhang J B, Wang J, Wang Y H. Investigation on micro-droplet phenomenon in the early atmospheric corrosion[J]. Equip. Env. Eng., 2005, (5): 14-17
[12] (张际标, 王佳, 王燕华.大气腐蚀起始过程中的微液滴现象研究[J]. 装备环境工程, 2005, (5): 14-17)
[13] Li C.Initial corrosion behavior of Q235 steel in thin fluid film of simulated medium [D]. Tianjin: Tianjin University, 2008: 2-7
[13] (李超.Q235钢在模拟介质薄液膜下早期阶段的腐蚀行为[D]. 天津: 天津大学, 2008: 2-7)
[14] Liang L H. The role of micro-droplets phenomenon in atmosphericcorrosion process [D]. Qingdao: Ocean University of China, 2009
[14] (梁利花. 微液滴现象在大气腐蚀过程中的作用 [D]. 青岛: 中国海洋大学, 2009)
[15] Li Y K.Electrochemical behavior research of metal corrosion under thin electrolyte lay [D]. Qingdao: Ocean University of China, 2007: 8-11
[15] (李亚坤. 薄液膜下金属电化学腐蚀行为研究 [D]. 青岛: 中国海洋大学, 2007: 8-11)
[16] Zhang B H,Cong W B,Yang P. Metal Electrochemical Corrosion and Protection[M]. Beijing: Chemical Industry Press, 2005: 115-124
[16] (张宝宏,丛文博,杨萍. 金属电化学腐蚀与防护[M]. 北京: 化学工业出版社, 2005: 115-124)
[17] Wang F P,Kang W L,Jing H M. Corrosion Electrochemical Principle, Method and Application[M]. Beijing: Chemical Industry Press, 2008: 132-141
[17] (王凤平,康万利,敬和民. 腐蚀电化学原理、方法及应用[M]. 北京: 化学工业出版社, 2008: 132-141)
[18] Cao C N. Corrosion Electrochemical Principle (3rd ed.)[M]. Beijing: Chemical Industry Press, 2008: 229-234
[18] (曹楚南. 腐蚀电化学原理 (第三版)[M]. 北京: 化学工业出版社, 2008: 229-234)
[1] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[2] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[3] 陈亚林, 张伟, 王琦, 王佳. WBE技术研究水线区破损涂层的剥离机制-II[J]. 中国腐蚀与防护学报, 2017, 37(4): 322-328.
[4] 丁健,张伟,王佳,陈亚林,尹鹏飞,张波. WBE技术研究水线区涂层劣化和涂层下金属腐蚀-I[J]. 中国腐蚀与防护学报, 2016, 36(5): 463-470.
[5] 冯林,王燕华,钟莲,王佳,李爱娇,金晓晓. 短期贮存对金属铜腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 375-380.
[6] 陈亚林,张伟,丁葵英,王佳,尹鹏飞,董彩常,杨万国. WBE技术研究水线区破损涂层的剥离机制[J]. 中国腐蚀与防护学报, 2016, 36(1): 67-72.
[7] 裴和中,尹作升,张国亮,刘远勇. 2024与2124铝合金电偶腐蚀行为的对比研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 133-136.
[8] 刘树勋; 刘宪民; 李培杰; 吴振宁 . 高Co热作钢在AZ91D镁合金液中腐蚀行为[J]. 中国腐蚀与防护学报, 2003, 23(2): 120-123 .
[9] 张鉴清; 张昭; 王建明 . 电化学噪声的分析与应用Ⅱ.电化学噪声的应用[J]. 中国腐蚀与防护学报, 2002, 22(4): 241-248 .
[10] 李正奉; 毛旭辉; 甘复兴 . 阴极保护下缝隙内的电流分布[J]. 中国腐蚀与防护学报, 2000, 20(6): 338-343 .
[11] 林昌健;卓向东;陈纪东;王辉. 阵列电极法测量聚合物/金属界面电位分布[J]. 中国腐蚀与防护学报, 1997, 17(1): 7-11.
[12] 宋光铃. 膜覆盖电极电化学浅析[J]. 中国腐蚀与防护学报, 1996, 16(3): 211-217.
[13] 马士德;谢肖勃;黄修明;李言涛;尹建德;彭树杰. 藤壶附着对海水中金属腐蚀的影响[J]. 中国腐蚀与防护学报, 1995, 15(1): 74-77.