Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (1): 89-94    DOI: 10.11902/1005.4537.2013.059
  本期目录 | 过刊浏览 |
碱性锌酸盐体系中Zn的电沉积行为研究
李园园1, 杜楠1(), 舒伟发2, 王帅星1, 赵晴1
1. 南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
2. 中航南京机电液压工程研究中心 南京 211106
Electrodeposition Behavior of Zinc in Alkaline Zincate Electrolyte
LI Yuanyuan1, DU Nan1(), SHU Weifa2, WANG Shuaixing1, ZHAO Qing1
1. National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University, Nanchang 330063, China
2. Nanjing Engineering Center of Aircraft Systems, Nanjing 211106, China
全文: PDF(1101 KB)   HTML
摘要: 

通过循环伏安、计时电位及电化学阻抗谱技术研究了碱性锌酸盐体系中Zn的阴极还原历程,采用计时电流法结合扫描电镜 (SEM) 研究了Zn的电化学成核机理。结果表明:溶液中Zn主要以Zn(OH)42-形式存在,Zn(OH)42-通过前置转化反应生成Zn(OH)2;Zn(OH)2在阴极界面上分两步放电,第一步放电后生成Zn(OH)ad吸附在电极表面,而后经第二步放电还原为Zn,两步均不可逆。外加电位为-1.40~-1.50 V时,体系中仅发生Zn(OH)2的第一步放电反应;电位负移至-1.60 V时,Zn(OH)2经历了两步放电过程,但Zn仅吸附在电极表面,电沉积过程处于一种非稳态;当电位负移至-1.70~-1.80 V时,吸附态Zn才持续进入晶格形成完整镀层。体系中Zn的电结晶过程遵循三维连续形核方式。

关键词 碱性锌酸盐体系Zn电沉积电化学阻抗谱    
Abstract

The cathodic reduction process of Zn in alkaline zincate electrolyte was studied by cyclic<br>voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS), while the electrochemical nucleation behavior of Zn was also characterized by using chronoamperometry (CA) and scanning electron microscope (SEM) techniques. The results indicated that Zn existed in the electrolyte in the form of Zn(OH)42-, through a preceding reaction which then transformed into Zn(OH)2 during electrodepositing. As the species directly discharged on the cathode surface, the discharge of Zn(OH)2 is a two step-process, by the first step Zn(OH)ad was produced and adsorbed on the surface of cathode, and then was reduced to Zn by the second step. The two steps of reduction of Zn(OH)2 were all nonreversible reaction. It is beneficial to the electrodeposition of Zn when the applied potential reduces. The first discharge reaction of Zn(OH)2 occurred when the applied potential was at -1.40~-1.50 V. The two discharge reactions of Zn(OH)2 were both occurred in the alkaline zincate system when applied potential reduced to -1.60 V but in this case, Zn atoms only adsorbed on the cathode surface and the electrodeposition process was in a non-steady state. The adsorbed Zn could finally electrocrystallized to form a uniform Zn coating only when the applied potential reduces to -1.70~-1.80 V. The electrocrystallization of Zn from alkaline zincate electrolyte may follow a three-dimensional progressive nucleation mechanism.

Key wordsalkaline zincate electrolyte    zinc    electrodeposition    electrochemical impedance spectroscopy
收稿日期: 2013-04-22     
ZTFLH:  O646  
基金资助:江西省教育厅重点科技项目 (GJJ11023) 资助
作者简介: null

李园园,女,1989年生,硕士生,研究方向为金属电沉积理论及工艺

引用本文:

李园园, 杜楠, 舒伟发, 王帅星, 赵晴. 碱性锌酸盐体系中Zn的电沉积行为研究[J]. 中国腐蚀与防护学报, 2014, 34(1): 89-94.
Yuanyuan LI, Nan DU, Weifa SHU, Shuaixing WANG, Qing ZHAO. Electrodeposition Behavior of Zinc in Alkaline Zincate Electrolyte. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 89-94.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.059      或      https://www.jcscp.org/CN/Y2014/V34/I1/89

图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
图9  
[1] Zhang X G. Efficiency of corrosion protection of steel by galvanizing and prospect for new coating development[J]. J. Chin. Soc. Corros. Prot., 2010, 30(2), 166-169
[1] (章小鸽. 镀锌保护钢铁的效率和新型锌镀层的发展前景[J]. 中国腐蚀与防护学报, 2010, 30(2): 166-169)
[2] Yu J, Chen Y, Yang H, et al. The influence of organic additives on zinc electrocrystallization from KCl solutions[J]. J. Electrochem. Soc., 1999, 146: 1789-1793
[3] Danciu V, Cosoveanu V, Grunwald E. Some additives influence on zinc electrodeposition from weak-acid electrolytes[J]. Galvanotecnik, 2003, 3: 566-575
[4] Trejo G, Ortega R, Meas B Y, et al. Nucleation and growth of zinc form chloride concentrated solutions[J]. J. Electrochem. Soc., 1998, 145: 4090-4097
[5] Ravinadran V, Muralidharan V S. Cathodic process on zinc in alkaline zincate solution[J]. J. Pow. Sour., 1995, 55: 237-241
[6] Wang J M, Zhang L, Zhang C, et al. Effects of bismuth ion and tetrabutylammonium bromide on the dendritic growth of zinc in alkaline zincate solutions[J]. J. Pow. Sour., 2001, 102: 139-143
[7] Raeissi K, Golozar A, Seatchi M A. Effect of nucleation mode on the morphology and texture of electrodeposited zinc[J]. J. Appl. Electrochem., 2003, 33: 635-642
[8] Margarita M H, Manuel P P, Nilola B, et al. Identification of different silver nucleation processes on vitreous carbon surfaces from an ammonia electrolytic bath[J]. J. Electroanal. Chem., 1998, 339, 80-88
[9] Bernner A. Electrodeposition of Alloys [M]. New York and London: Academic Press, 1963: 22-35
[10] Bockris J O'M, Nagy Z, Damjanovic A. On the deposition and dissolution of zinc in alkaline solution[J]. J. Electrochem. Soc., 1972, 119(3): 285-289
[11] Peng W J, Wang Y Y. Mechanism of zinc electroplating in alkaline zincate solution[J]. J. Cent. South Univ. Technol., 2007, 14(1): 37-41
[12] Kavitha B, Santhosh P, Penukaelei M. Role of organic additives on zinc plating[J]. Surf. Coat. Technol., 2006, 201(6): 3438-3442
[13] Yang Y F, Gong Z Q, Li Q G. Electrochemical deposition of trivalent chromium[J]. J. Cent. South. Univ.(Sci. Technol.) 2008, 39, 112-117
[13] (杨余芳, 龚竹青, 李强国. 三价铬的电化学沉积[J]. 中南大学学报 (自然科学版). 2008, 39: 112-117)
[14] Bonou M, Eyraud J, Crousier. Nucleation and growth of copper on glassy carbon and steel[J]. J. Appl. Electrochem., 1994, 24: 906-910
[15] Fletcher S. Some new formulae applicable to electrochemical nucleation/growth/collision[J]. J. Electrochim. Acta, 1983, 28(7): 917-923
[16] Zhong Q, Gu M, Li Q. Studies on the influence of sodium 3-mercaptopropanesulphonate additives on copper electrodeposition[J]. Acta Chim. Sin., 2010, 68: 17-19
[16] (钟琴, 辜敏, 李强. 添加剂3-巯基-1-丙烷磺酸钠对铜电沉积影响的研究[J]. 化学学报, 2010, 68: 17-19)
[17] Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochim. Acta, 1983, 28: 879-889
[1] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[2] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[5] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[6] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[7] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[8] 杨明馨, 高阳, 王辉. 添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 199-204.
[9] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[10] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[12] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[13] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[14] 蒋斌, 曾利兰, 梁涛, 潘浩波, 乔岩欣, 张竞, 赵颖. 316L不锈钢表面超疏水微纳镍镀层定向电沉积工艺优化研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 438-446.
[15] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.