Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (2): 117-122    
  研究报告 本期目录 | 过刊浏览 |
Sn含量对N36锆合金在LiOH水溶液中耐腐蚀性能的影响
杨忠波 赵文金 苗 志
中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610041
Effect of Sn Content on Corrosion Resistance of N36 Alloys in LiOH Aqueous Solution
YANG Zhongbo, ZHAO Wenjin, MIAO Zhi
Science and Technology on Reactor Fuel and Materials Laboratory,Nuclear Power Institute of China (NPIC) ,Chengdu 610041, China
全文: PDF(4218 KB)  
摘要: 比较了N36(Zr-1Sn-1Nb-0.3Fe)及低锡N36 (Zr-0.8Sn-1Nb-0.3Fe)锆合金样品在360 ℃/18.6 MPa/0.03 mol/L LiOH 水溶液中的耐腐蚀性能,发现N36提前发生腐蚀转折,转折后腐蚀增重远高于低锡N36。观察了腐蚀转折后合金样品氧化膜形貌及物相特征,发现在氧化膜断面上形成平行于氧化膜/金属界面的裂纹,而界面氧化膜呈"菜花"状生长;与N36相比,低锡N36氧化膜形貌显示断面裂纹相对较少,界面生长的氧化膜较为平整;随腐蚀速率的增加,断面裂纹增多,界面膜呈"菜花"状凸起越严重;氧化膜中产生的裂纹与四方相的转变有关。讨论了Sn对N36合金耐腐蚀性能影响的机理,认为固溶在α-Zr中的Sn含量是引起耐腐蚀性能差别的主要原因。
关键词 锆合金耐蚀性氧化膜    
Abstract:Abstract:The corrosion resistance of N36(Zr-1Sn-1Nb-0.3Fe) and low-tin N36(Zr-0.8Sn-1Nb- 0.3Fe) alloys were studied in 0.03 mol/L LiOH equous solution at 360 ℃ as well as 18.6 mol/L Pa pressure. The results show that the corrosion transition of N36 specimens appears earlier than that of low-tin N36 and the weight gain of N36 specimens is higher than that of low-tin N36 after the corrosion transition. The cracks paralleling to the interface of oxide/metal are formed in the fracture surface of the oxide film and the oxide film in the inner surface appears at the“Cauliflower-like” morphology . With the increasing of corrosion rate ,there are more cracks in the fracture surface of the oxide film and the size of “cauliflower-like”structure grows bigger. It was concluded that the crackss were related to the t-ZrO2 and the solid solution contents of Sn in α-Zr will be responsible for the difference of corrosion resistance for N36 and low-tin N36.
Key wordsKey words:zirconium alloys    corrosion resistance    oxide films
    
ZTFLH:  TL341  

引用本文:

杨忠波 赵文金 苗 志. Sn含量对N36锆合金在LiOH水溶液中耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2013, 33(2): 117-122.
. Effect of Sn Content on Corrosion Resistance of N36 Alloys in LiOH Aqueous Solution. Journal of Chinese Society for Corrosion and protection, 2013, 33(2): 117-122.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I2/117

[1] Zhao W J, Liu Y Z, Jiang H M, et al. Effect of heat treatment and Nb and H contents on the phase transformation of N18 and N36 zirconium alloys [J]. J. Alloys Compd., 2008, 46(2): 103-108
[2] Liu J Z, Zhao W J, Xue X Y, et al. Nuclear Structure Materials [M]. Beijing:Chemical Industry Press, 2007
(刘建章, 赵文金, 薛祥义等. 核结构材料 [M]. 北京: 化学工业出版社, 2007)
[3] Garde A M, Comstock R J, Pan G, et al. Advanced zirconium alloys for PWR application [J]. J. ASTM Int., 2010, 7(9): 1546-1568
[4] Yueh H K, Kesterson R L, Comstock R J, et al. Improved ZIRLOTM cladding performance through chemistry and process modifications [J]. J. ASTM Int., 2005, 2(6): 330-346
[5] Shishov V N, Peregud M M, Nikulina A V, et al. Structure-phase state, corrosion and irradiation properties of Zr-Nb-Fe-Sn system alloys [J]. J. ASTM Int., 2007, 5(3): 724-743
[6] Park J Y ,Yoo S J , Choi B K ,et al. Corrosion and oxide characteristics of Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr alloys in 360 ℃ pure equous and LiOH solution [J]. J. Nucl. Mater., 2008, 37(3): 343-350
[7] Zhou B X, Li Q, Yao M Y, et al. Microstructure evolution of oxide films formed on zircaloy-4 during autoclave tests [J]. Nuclear Power Eng., 2005, 26(4): 364-371
(周邦新, 李强, 姚美意等. 锆-4合金在高压釜中腐蚀时氧化膜显微组织的演化 [J]. 核动力工程, 2005, 26(4): 364-371
[8] Yao M Y, Zhou B X, Li Q, et al. A superior corrosion behavior of Zircaloy-4 in lithiated equousat 360 ℃/18.6 MPa by β-quenching [J]. J. Nucl. Mater., 2008, 374: 197-203
[9] Zhang H X, Fruchart D, Hlil E K, et al. Crystal structure, corrosion kinetics of new zirconium alloyss and residual stress analysis of oxide films [J]. J. Nucl. Mater., 2010, (396): 65-70
[10] Takeda K, Anada H. Mechanism of corrosion rate degradation due to tin [J]. J. ASTM Int., 2000: 592-608
[11] Zhao W J, Miao Z, Jiang H M, et al. Corrosion behavior of Zr-Sn-Nb alloy [J]. J. Chin. Soc. Corros. Prot., 2002, 22(2): 124-128
(赵文金, 苗志, 蒋宏曼等. Zr- Sn-Nb 合金的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2002, 22(2): 124-128
[12] Kim H G, Baek J H, Kim S D, et al. Microstructure and corrosion characteristics of Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr alloy with a β-annealing [J]. J. Nucl. Mater., 2008, 372: 304-311
[13] Park J Y, Yoo S J, Choi B K, et al. Oxide microstructures of advanced Zr alloys corroded in 360 ℃ water loop [J]. J. Alloys Compd., 2007, 437: 274-279
[14] Yilmazbayhan A , Breval E, Motta A T, et al. Transmission electron microscopy examination of oxide layers formed on Zr alloyss [J]. J. Nucl. Mater., 2006, 349: 265-281
[15] Zhou B X, Li Q, Liu W Q, et al. The effects of water chemistry and composition on the microstructure evolution of oxide films on zirconium alloys during autoclave tests [J]. Rare Met. Mater. Eng., 2006, 35(7): 1009-1016
(周邦新, 李强, 刘文庆等. 水化学及合金成分对锆合金腐蚀时氧化膜显微组织演化的影响 [J]. 稀有金属材料与工程, 2006, 35(7): 1009-1016)
[16] Moyal J S, Diazi M, Bartolome J F, et al. Zirconium oxide film formation on zircaloy by equous corrosion [J]. Acta Mater., 2000, (48): 4749-4754
[17] Motta A T, Yilmazbayhan A, Comstock R J, et al.Microstructure and growth mechanism of oxide layers formed in Zr alloys studied with micro beam synchrotron radiation [J]. J. ASTM Int., 2005, (2): 205-232
[18] Bossis P, Thomazet J. Study of the mechanisms controlling the oxide growth under irradiation:characterization of irradiated Zr-4 and Zr-1Nb-O oxide scales [J]. J. ASTM Int., 2002, 6(4): 190-221
[19] Anada H, Herb B J, Nomoto K I, et al. Effect of annealing temperature on corrosion behavior and ZrO2 microstructure of zircaloy-4 cladding tube [J]. J. ASTM Int., 1996, 74-93
[20] Qin W, Nam C, Li H L, et al. Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance [J]. Acta Mater., 2007, (55): 1695-1701
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[9] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[10] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[11] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[12] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[13] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[14] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[15] 郝利新, 贾瑞灵, 张慧霞, 张伟, 赵婷, 翟熙伟. 7A52铝合金双丝MIG焊接头的不均匀性对其表面微弧氧化膜腐蚀防护作用的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.