Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (2): 127-132    
  研究报告 本期目录 | 过刊浏览 |
合金元素对铝基牺牲阳极性能的影响
李威力1,2,闫永贵2,陈光1,马力2
1. 南京理工大学材料科学与工程系 南京 210094
2. 中船重工七二五所 海洋腐蚀与防护重点实验室 青岛 266101
EFFECT OF ALLOY ELEMENTS ON ELECTROCHEMICAL PERFORMANCE OF ALUMINUM SACRIFICIAL ANODE
LI Weili1,2, YAN Yonggui2, CHEN Guang1, MA Li2
1. Department of Materials Science of Engineering, Nanjing University of Science and Technology, Nanjing 210094
2. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101
全文: PDF(1677 KB)  
摘要: 通过合金化方法,在Al-Zn-In三元牺牲阳极中依次添加Mg、Ti、Ga、Mn、Sn等元素,炼制不同成分的铝合金牺牲阳极。采用电化学性能测试、极化曲线测量及扫描电子显微镜分析等手段分析了合金元素对铝合金牺牲阳极性能的影响。结果表明,随着添加元素种类的增加,牺牲阳极电化学性能提高。在Al-Zn-In三元阳极中加入Mg和Ti,阳极溶解形貌更加均匀;加入Ga与Sn后,阳极的开路电位与工作电位负移;加入Mn后阳极的电流效率提高。
关键词 合金元素溶解形貌电流效率电位    
Abstract:Elements such as Mg, Ti, Ga, Mn and Sn were added to the Al-Zn-In based ternary anode in order using alloying method and the aluminum sacrificial anodes with different incorporated elements were cast. The electrochemical performance test, polarization plots and scanning electron microscope technique were carried out to analyze the influence of several familiar elements to the performance of the aluminum anode. The experiment results indicated that with the increase of the adding element the anode electrochemical performance was improved. When the elements of Mg and Ti were added to Al-Zn-In ternary anode the dissolution morphology was more uniform. When Ga and Sn were added, the anode open-circuit potential and closed-circuit potential were more negative. When Mn was added, the current efficiency was promoted.
Key wordsalloying elements    dissolution morphology    current efficiency    potential
收稿日期: 2010-11-30     
ZTFLH: 

TG146.21

 
通讯作者: 李威力     E-mail: lwlwin@yahoo.com.cn
作者简介: 李威力,男,1983年生,博士生,研究方向为金属材料腐蚀与防护

引用本文:

李威力,闫永贵,陈光,马力. 合金元素对铝基牺牲阳极性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(2): 127-132.
LI Wei-Li. EFFECT OF ALLOY ELEMENTS ON ELECTROCHEMICAL PERFORMANCE OF ALUMINUM SACRIFICIAL ANODE. J Chin Soc Corr Pro, 2012, 32(2): 127-132.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I2/127

[1] Salinas D R, Bessone J B. Electrochemical behavior of Al-5%Zn-0.1%Sn sacrificial anode in aggressive media[J].Corrosion, 1991, 47(9): 665-674

[2] Gurrappa J, Karnik J A. The effect on tin-activated aluminum-alloy anodes of the addition of bismuth[J]. Corros. Prev.Contr., 1994, 41(5): 117-121

[3] Baebucci A, Cerisola G, Bruzzone G, et al. Activation of aluminum anodes by the presence of intermetallic compounds[J].Electrochim. Acta, 1997, 42(15): 2369-2380

[4] Qi G T, Guo Z H, Wei B K, et al. The effect of water quenching on microstructure and electrochemistry performance of Al-Zn-In-Sn-Mg anode[J]. Trans. Met. Heat Treat., 2000, 21(4): 68-72

    (齐公台,郭稚弧,魏伯康等.固溶处理对Al-Zn-In-Sn-Mg阳极组织与电化学性能的影响[J].金属热处理学报, 2000, 21(4): 68-72)

[5] Zhang X Y, Huo S Z, Wang Y X. The effect of alloy elements on the property of Al-Zn-In-Ga sacrificial anode[J]. Mater. Prot.,1996, 29(2): 3-5

    (张信义, 火时中, 王元玺.合金元素对Al-Zn-In-Ga合金牺牲阳极性能的影响[J]. 材料保护, 1996,29(2): 3-5)

[6] Guo Z C, Song Y H, Geng W D. High performance Al-Zn-In series sacrificial anode materials[J]. Mater. Mech. Eng., 2005,29(12): 38-41

    (郭忠诚, 宋曰海, 耿卫东.铝-锌-铟系列高性能牺牲阳极料的研究[J]. 机械工程材料, 2005, 29(12):38-41)

[7] Qu J E, Qi G T, Zhang L. Effect of RE and solution treatment on electrochemical performance of aluminum anodes[J].Corros. Sci. Prot. Technol., 2002, 14(3): 169-171

    (屈钧娥,齐公台, 张磊. 稀土元素和固溶处理对Al 阳极电化学性能的影响[J].腐蚀科学与防护技术, 2002, 14(3): 169-171)

[8] Yuan C J, Liang C H, An X W. Effect of Ga on electrochemical properties of Al-Zn-In sacrificial anodes[J]. J.Dalian Univ. Technol., 2004, 44(4): 502-505

    (袁传军, 梁成浩,安晓雯. Ga对Al-Zn-In合金牺牲阳极电化 学性能影响[J].大连理工大学学报, 2004, 44(4): 502-505)

[9] Munoz A G, Saidman S B, Bessone J B. Corrosion mechanism of Al-Zn-In alloys in chloride solutions[J]. Latin Am. Appl. Res.,2003, 33: 275-280

[10] Reboul M C, Gimenez P H, Rameau J J. A proposed activation mechanism for Al anodes[J]. Corrosion, 1984, 40(7):366-371

[11] Aragon E, Cazenave V L, Lanza E, et al. Electrochemical behavior of binary Al-Ga and ternary Al-Zn-Ga alloys as function of thermodynamic properties[J]. Bri. Corros. J., 1997, 32(2): 121-125

[12] Sato F, Newman R C. Mechanism of activation of aluminum by low-melting point elements: part 2-Effect of zinc on activation of aluminum in pitting corrosion[J]. Corrosion, 1999, 55(1): 3-9

[13] Muller L L, Galvele J R. Pitting potential of high purity binary aluminium alloys-II. Al-Mg and Al-Zn alloys[J]. Corros. Sci.,1977, 17: 995-1007

[14] Alvarez O, Gonzalez C, Aramburo G, et al. Characterization and prediction of microstructure in Al-Zn-Mg alloys[J]. Mater. Sci. Eng., 2005, 402A: 320-324

[15] Sina H, Emamy M, Saremi M, et al. The influence of Ti and Zr on electrochemical properties of aluminum sacrificial anodes[J]. Mater. Sci. Eng., 2006, 431A: 263-276

[16] Pan Y, Sun G X. Morphology control of iron phase and its effect on properties of Al alloys[J]. Spe. Cast. Nonferrous alloys,1993, 5: 1-3

     (潘冶, 孙国雄.铝合金中铁相形态控制及对性能的影响[J].特种铸造及有色合金, 1993, 5:1-3)

[17] Gurrappa I. The surface free energy and anode efficiency of aluminium alloys[J]. Corros. Prev. Contr., 1993, 43: 111-114

[18] Li Z Y, Yi L, Liu Z H, et al. The activation mechanism of Al alloys with tin and gallium in alkaline electrolytes[J].Electrochemistry, 2001, 7(3): 316-320

     (李振亚,易玲,刘稚蕙等.含镓、锡的铝合金在碱性溶液中的活化机理[J].电化学, 2001, 7(3):316-320)
[1] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[5] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[6] 王帅,刘新宽,刘平,陈小红,李伟,马凤仓,何代华,张珂. Sn、Al对无镍白铜耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 45-50.
[7] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[8] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[9] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[10] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[11] 施远,金洙吉,姜冠楠,刘作涛,周忠正,王泽北. YG15硬质合金电化学腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[12] 张志英, 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏. 铜基非晶合金复合材料在NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[13] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[14] 焦明远, 金伟良, 毛江鸿, 李腾, 夏晋. 电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[15] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.