Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (3): 196-201    
  研究报告 本期目录 | 过刊浏览 |
等离子喷涂耐冲蚀陶瓷涂层的性能研究
李守彪1,2, 许立坤2,沈承金1,李相波2
1. 中国矿业大学材料科学与工程学院 徐州 221116
2. 中船重工七二五所海洋腐蚀与防护国防科技重点实验室 青岛 266101
PERFORMANCE OF EROSION-RESISTANT CERAMIC COATINGS DEPOSITED BY PLASMA SPRAYING
LI Shoubiao1,2, XU Likun2, SHEN Chengjin1, LI Xiangbo2
1. School of Materials Science and Engineering, China University of Mining & Technology, Xuzhou 221116
2. State key Laboratory for Marine Corrosion and Protection, Luoyang Ship Materials Research Institute,Qingdao 266101
全文: PDF(2130 KB)  
摘要: 采用等离子喷涂工艺在高锰铝青铜基体上制备了 Al2O3-13%TiO2和 Cr2O3•5SiO2•3TiO2两种耐冲< 蚀复合涂层,利用扫描电子显微镜(SEM)、激光扫描显微镜 (LSM)等手段观察分析了两种涂层的组织形貌,测试了两种涂层的显微硬度和结合强度,用电化学测量和失重测量分别研究了两种涂层在3.5%NaCl溶液中的电化学行为以及耐海水冲刷腐蚀性能。结果表明,Cr2O3•5SiO2•3TiO2 涂层组织致密,无明显层状结构;陶瓷涂层在3.5%NaCl溶液中的电化学腐蚀行为主要取决于涂层的孔隙率;Cr2O3• 5SiO2•3TiO2涂层试样在动态海水中的冲刷腐蚀失重约为基体试样的1/9,表现出较Al2O3-13%TiO2涂层更优异的耐海水冲刷腐蚀性能。
关键词 等离子喷涂电化学陶瓷涂层冲刷腐蚀    
Abstract:Al2O3-13%TiO2 and Cr2O3•5SiO2•3TiO2 erosion-resistant ceramic coatings were deposited on Al-bronze alloy using plasma spraying process. The morphologies of the two coatings were investigated by means of scanning electron microscope (SEM) and laser scanning microscope (LSM). Microhardness and adhesion strength have been evaluated, respectively. The corrosion behavior of two coatings in 3.5% NaCl solution were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy. SEM analysis of corroded surface and weight loss technique were used to study the erosion-corrosion of coated samples and uncoated sample in flowing seawater. The results indicated that Cr2O3•5SiO2•3TiO2 coating has a much dense microstructure and the laminar microstructure was not obviously observed. The corrosion behavior of ceramic coatings was mainly related to the porosity of the coatings. Due to higher microhardness and adhesion strength, the weight loss of Cr2O3•5SiO2•3TiO2 coated sample was nearly 1/9 of that of uncoated one, indicating better resistance to erosion-corrosion in flowing seawater than Al2O3-13%TiO2 coating.
Key wordsplasma spraying    electrochemistry    ceramic coating    erosion-corrosion
收稿日期: 2010-10-09     
ZTFLH: 

TG174.4

 
通讯作者: 许立坤      E-mail: xulk@sunrui.net
Corresponding author: XU Likun     E-mail: xulk@sunrui.net
作者简介: 李守彪, 男,1986年生,硕士生,研究方向为海洋腐蚀与防护

引用本文:

李守彪, 许立坤,沈承金,李相波. 等离子喷涂耐冲蚀陶瓷涂层的性能研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 196-201.
LI Shou-Biao, XU Li-Kun, CHEN Zhang-Jin, LI Xiang-Bei. PERFORMANCE OF EROSION-RESISTANT CERAMIC COATINGS DEPOSITED BY PLASMA SPRAYING. J Chin Soc Corr Pro, 2011, 31(3): 196-201.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I3/196

[1] Niebuhr D. Cavitation erosion behavior of ceramics in aqueous solutions [J]. Wear, 2007, 263(1-6)

[2] Li X Y, Yan Y G, Ma L, et al. Cavitation erosion and corrosion behavior of copper-manganese-aluminum alloy weldment [J]. Mater. Sci. Eng., 2004, A382: 82-89

[3] Wood R J K. The sand erosion performance of coatings [J]. Mater. Des. 1999, 20: 179-191

[4] Wood R J K, Speyer A J. Erosion-corrosion of candidate HOVF aluminium-based marine coatings [J].Wear, 2004, 256(5): 545-556

[5] Bolelli G, Cannillo V, Lusvarghi L, et al. Wear behaviour of thermally sprayed ceramic oxide coatings [J]. Wear, 2006, 261(11-12): 1298-1315

[6] Celik E, Avci E, Ylimaz F. Evaluation of interface reactions in thermal barrier ceramic coatings [J].Surf. Coat. Technol., 1997, 97: 361-365

[7] Celik E, Ozdemir I, Avci E, et al. Corrosion behaviour of plasma sprayed coatings [J]. Surf. Coat.Technol., 2005, 193: 297-302

[9] Tao S H, Yin Z J, Zhou X M, et al. Sliding wear characteristics of plasma-sprayed Al2O3 and Cr2O3 coatings against copper alloy under severe conditions [J]. Tribol.Int., 2010, 43: 69-75

[10] Li C F, Wang R, Niu Y H, et al. Influence of doped nanoparticles on the anticorrosion performance of the plasma spraying of Al2O3-13% massTiO2   coatings [J]. J. Chin. Soc. Corros. Prot., 2008, 28(6): 331-335

     (李春福, 王戎, 牛艳花等. 纳米掺杂对Al2O3-13% TiO2 等离子喷涂涂层耐蚀性能的影响 [J]. 中国腐蚀与防护学报,2008, 28(6): 331-335)

[11] Zhang J X, He J N, Dong Y C. Microstructure characteristics of Al2O3-13% TiO2  coating plasma spray deposited with nanocrystalline powders [J]. J.Mater. Process. Technol., 2008, 197: 31-35

[12] Li Z D, Wu Z J, Zeng L K, et al. Study on properties of plasma sprayed nanostructured Cr2O3•5SiO2•3TiO2 coating [J].Nonferrous Met., 2007(Suppl.): 72-74

[13] Tian W, Wang Y, Zhang T, et al. Sliding wear and electrochemical corrosion behavior of plasma sprayed nanocomposite Al2O3-13% TiO2  coatings [J]. Mater. Chem. Phys., 2009, 118: 37-45

[14] Wang Y, Tian W, Zhang T, et al. Microstructure, spallation and corrosion of plasma sprayed Al2O3-13% TiO2 coatings [J]. Corros.Sci., 2009, 10: 1016-1023

[15] Penttinen I M, Korhonen A S, Harju E, et al. Comparison of the corrosion resistance of TiN and (Ti, Al) N coatings [J]. Surf. Coat. Technol. 1992, 50: 161-168

[16] Yang H G, Zhu X M, Lei M K. Evaluation of porosity of hard coating by corrosion electrochemistry [J].Corros. Sci. Prot. Technol., 2005, 17(6): 413-417

     (杨海钢, 朱雪梅, 雷明凯. 腐蚀电化学方法评价硬质涂层孔隙率 [J]. 腐蚀科学与防护技术, 2005, 17(6): 413-417)

[17] Tato W, Landolt D. Electrochemical determination of the porosity of single and duplex PVD coatings of titanium and titanium nitride on brass [J]. J. Electrochem.Soc. 1998, 145: 4173-4181

[18] Creus J, Mazille H, Idrissi H. Porosity evaluation of protective coatings onto steel through electrochemical techniques [J]. Surf. Coat. Technol. 2000, 130: 224-232

[19] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing:Science Press, 2002, 151-166

     (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002, 151-166)

[20] Hu J M, Zhang J T, Zhang J Q, et al. A novel methods for determination of diffusion coefficient of corrosive species in organic coating by EIS [J]. J. Mat.Sci. 2004, 39: 4475-4479

[21] Guo J H, Wu J W, Ni X J. Electrochemical behavior of Fe-based coating containing amorphous phase prepared by electric arc spraying [J]. Acta Metall. Sin., 2007, 43(7): 780-784

     (郭金花, 吴嘉伟, 倪晓俊. 电弧喷涂非晶相的Fe基涂层的电化学行为 [J]. 金属学报, 2007, 43(7): 780-784)

[22] Hu J M, Zhang J T, Zhang J Q, et al. Corrosion electrochemical characteristics of red iron oxide pigmented epoxy coatings on aluminum alloys [J]. Corros. Sci., 2005, 47: 2607-2618
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] 任岩, 钱余海, 张鑫涛, 徐敬军, 左君, 李美栓. 热震对包覆ZrB2-SiC-La2O3/SiC涂层渗硅石墨力学性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[6] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[7] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[8] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[9] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[10] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[11] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[12] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[13] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[14] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[15] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.