Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (3): 173-178    
  综述 本期目录 | 过刊浏览 |
埋地管道交流腐蚀的研究进展
董亮,路民旭,杜艳霞,姜子涛
北京科技大学材料科学与工程学院 北京 100083
INVESTIGATION PROGRESS OF ALTERNATING CURRENT CORROSION ON BURIED PIPELINES
DONG Liang, LU Minxu, DU Yanxia, JIANG Zitao
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
全文: PDF(426 KB)  
摘要: 综述了埋地管道交流腐蚀的研究现状,包括人们对交流腐蚀的认识过程,交流腐蚀的特征和机理,交流腐蚀风险的评价方法以及交流腐蚀的缓解措施。最后提出了埋地管道交流腐蚀有待解决的问题。
关键词 埋地管道交流腐蚀机理交流腐蚀风险评价方法缓解措施    
Abstract:Alternating current (AC) corrosion on buried pipelines has drawn much attention. Current status of the researches is reviewed in this article. The understanding of AC corrosion is mentioned. Characteristics, mechanisms, and mitigations of AC corrosion and the evaluation methods for AC corrosion risk are concluded. Finally, the issues for further investigations are proposed.
Key wordsburied pipeline    AC corrosion    mechanism    AC corrosion risk    evaluation methods    mitigation
收稿日期: 2009-10-26     
ZTFLH: 

TG172.84

 
基金资助:

北京市自然科学基金重大项目(3080001)资助

通讯作者: 杜艳霞     E-mail: duyanxia@ustb.edu.cn
Corresponding author: DU Yanxia     E-mail: duyanxia@ustb.edu.cn
作者简介: 董亮,男,1984年生,博士,研究方向为金属材料的腐蚀与防护

引用本文:

董亮,路民旭,杜艳霞,姜子涛. 埋地管道交流腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2011, 31(3): 173-178.
DONG Liang. INVESTIGATION PROGRESS OF ALTERNATING CURRENT CORROSION ON BURIED PIPELINES. J Chin Soc Corr Pro, 2011, 31(3): 173-178.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I3/173

[1] McCollum B, Ahlborn G H. The influence of frequency of alternating or infrequently reversed current on electrolytic corrosion [J]. J. Franklin Inst., 1916, 182(1): 108-110

[2] Hewes F. Four phenomena affecting cathodic protection and corrosion rates [J]. Mat. Prot., 1969, 8(9): 67-71

[3] Gummow R A, Wakelin R G, Segall S M. AC corrosion-a new challenge to pipeline integrity [A].Corrosion/1998 [C]. Houston, TX: NACE, 1998, paper No.98566

[4] Wakelin R G, Gummow R A, Segall S M. AC corrosion-case histories, test procedures, mitigation [A]. Corrosion/1998 [C].Houston, TX: NACE, 1998, paper No.98565

[5] Roger F. Testing and mitigation of AC corrosion on 8" line: a field study [A]. Corrosion/2004 [C]. Houston, TX:NACE, 2004, paper No.04210

[6] Hanson H R, Jack S. AC corrosion on a pipeline located in an HVAC utility corridor [A]. Corrosion/2004 [C].Houston, TX: NACE, 2004, paper No.04209

[7] Eden D A. AC interference and accelerated pipeline corrosion in utility corridors-an alternative perspective to the root causes [A]. Corrosion/2006 [C]. Houston, TX:NACE, 2006, paper No.06159

[8] Li Y, Dawalibi F P. Effects of current unbalance and transmission line configuration on the interference levels induced on nearby pipelines [A]. Corrosion/2004 [C].Houston, TX: NACE, 2004, paper No.04213

[9] Wakelin R G, Sheldon C.Investigation and mitigation of AC corrosion on a 300 mm diameter natural gas pipeline [A]. Corrosion/2004 [C]. Houston, TX: NACE, 2004,paper No.04205

[10] Kulman F E. Effects of alternating currents in causing corrosion [J]. Corrosion, 1961, 17(3): 34-35

[11] Bertocci U. AC induced corrosion: the effect of an alternating voltage on electrodes under charge transfer control [J]. Corrosion,1979, 35(5): 211-215

[12] Lalvani S B, Lin X A. A theoretical approach for predicting AC-induced corrosion [J]. Corros. Sci.,1994, 36(6): 1039-1046

[13] Lalvani S B, Lin X. A revised model for predicting corrosion of materials induced by alternating voltages [J]. Corros. Sci., 1996, 38(10): 1709-1719

[14] Bosch R W, Bogaerts W F. A theoretical study of AC-induced corrosion considering diffusion phenomena [J]. Corros. Sci., 1998, 40(2-3): 323-336

[15] Bolzoni F, Goidanich S, Lazzari L, et al. Laboratory testing on the influence of alternated current on steel corrosion [A]. Corrosion/2004 [C]. Houston, TX: NACE,2004, paper No.04208

[16] Goidanich S, Lazzari L, Ormellese M, et al. Influence of AC on corrosion kinetics for carbon steel, zinc and copper [A]. Corrosion/2005 [C]. Houston, TX: NACE, 2005, paper No.05189

[17] Jones D A. Effect of alternating current on corrosion of low alloy and carbon steels [J]. Corrosion, 1978, 34(12): 428-433

[18] Zhang R, Vairavanathan P R, Lalvani S B. Perturbation method analysis of AC-induced corrosion [J]. Corros. Sci., 2008,50(6): 1664-1671

[19] Song H S, Kim Y G, Lee S M, et al. Competition of AC and DC current in AC corrosion under cathodic protection [A].Corrosion/2002 [C]. Houston, TX: NACE, 2002, paper No.02117

[20] Cao C N. Principle of Corrosion Electrochemistry [M].Beijing: Chemical Industry Press, 2004: 114-116

        (曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2004: 114-116)

[21] Ibrahim I, Takenouti H,Tribollet B, et al. Harmonic analysis study of the AC corrosion of buried pipelines under cathodic protecion [A]. Corrosion/2007 [C].Houston, TX: NACE, 2007, paper No.07042

[22] Nielsen L V, Galsgaard F. Sensor technology for on-line monitoring of AC-induced corrosion along pipelines [A]. Corrosion/2005 [C]. Houston, TX: NACE, 2005, paper No.05375

[23] Nielsen L V, Nielsen K V.Differential ER-technology for measuring degree of accumulated corrosion as well as instant corrosion rate [A]. Corrosion/2003 [C].Houston, TX: NACE, 2003, paper No.03443

[24] Nielsen L V, Nielsen K V, Baumgarten B, et al. AC-induced corrosion in pipelines:detection, characterisation, and mitigation [A]. Corrosion/2004 [C].Houston, TX: NACE, 2004, paper No.04211

[25] Panossian Z, Filho S E A, de Almeida N L, et al. Effect of alternating current by high power lines voltage and electric transmission systems in pipelines corrosion [A]. Corrosion/2009 [C]. Houston, TX: NACE, 2009, paper No.09541

[26] NACE standard RP0177-2000, Mitigation of alternating current and lightning effects on metallic structures and corrosion control systems [S].

[27] GB standard 21447-2008, Specification external corrosion control for steel pipelines [S].

[28] DIN standard 15280-2006, Evaluation of a.c. corrosion likelihood of buried pipelines-Application to cathodically protected pipelines [S].

[29] Simon P D, Schmidt J T, Mumme B K. Dynamic nature of HVAC induced current density on collocated pipelines [A].Corrosion/2007 [C]. Houston, TX: NACE, 2007, paper No.07650

[30] Frazier M J, Barlo T J. Influence of AC from power lines on the cathodic protection of steel in groundwater solutions [A].Corrosion/1996 [C]. Houston, TX: NACE, 1996, paper No.96210

[31] Yunovich M, Thompson N G. AC corrosion: corrosion rate and mitigation requirements [A]. Corrosion/2004 [C]. Houston,  TX:NACE, 2004, paper No.04206

[32] Nielsen L V. Role of alkalization in AC induced corrosion of pipelines and concequences hereof in relation to CP requirements [A]. Corrosion/2005 [C]. Houston, TX:NACE, 2005, paper No.05188

[33] Ragault I. AC corrosion induced by V.H.V. electrical lines on polyethylene coated steel gas pipelines [A]. Corrosion/1998 [C]. Houston, TX: NACE,1998, paper No.98557

[34] Ormellese M, Lazzari L, Goidanich S, et al. CP criteria assessment in the presence of AC interference [A].Corrosion/2008 [C]. Houston, TX: NACE, 2008, paper No.08064

[35] Hosokawa Y, kajiyama F, Nakamura Y. New CP criteria for elimination of the risks of AC corrosion and overprotection on cathodically protected pipelines [A]. Corrosion/2002 [C]. Houston, TX: NACE, 2002,paper No.02111

[36] Hosokawa Y, Kajiyama F. New CP maintenance concept for buried steel pipelines-current density-based CP criteria, and on-line surveillance system for CP rectifiers [A].Corrosion/2004 [C]. Houston, TX: NACE, 2004, paper No.04047

[37] Hosokawa Y, Kajiyama F. Case studies on the assessment of AC and DC interference using steel coupons with respect to current density CP criteria [A]. Corrosion/2006 [C].Houston, TX: NACE, 2006, paper No.06161

[38] Chin D T, Fu T W. Corrosion by alternating current: a study of the anodic polarization of mild steel in Na2SO4 solution [J]. Corrosion, 1979, 35(11): 514-523

[39] Mankar D S,Rodriguez R E. Designing cathodic protection system under the influence of high voltage AC interference [A]. Corrosion/2006 [C].Houston, TX: NACE, 2006, paper No.06162

[40] Kirkpatrick E L.Electrical grounding case histories [A]. Corrosion/2003 [C].Houston, TX: NACE, 2003, paper No.03701

[41] Dabkowski J. A review of AC power line coupling unto buried pipelines [A].Corrosion/1998 [C]. Houston, TX: NACE, 1998, paper No.98561

[42] Dabkowski J. Methodologies for AC mitigation [A]. Corrosion/2003 [C].Houston, TX: NACE, 2003, paper No.03703

[43] Dabkowski J, Allen R F, Perry F A. Mitigation design, installation and post commissioning measurements for a pipeline collocated with AC transmission lines [A]. Corrosion/2001 [C]. Houston, TX: NACE, 2001, paper No.01601

[44] Dabkowski J, Kirkpatrick E L. Design considerations for mitigation of induced AC on pipelines [A]. Corrosion/2001 [C].Houston, TX: NACE, 2001, paper No.01597

[45] Southey R D, Dawalibi F P. Computer modeling of AC interference problems for the most cost-effective solutions [A]. Corrosion/1998 [C]. Houston, TX:NACE, 1998, paper No.98564

[46] Southey R D, Dawalibi F P, Li Y, et al. Increasing the cost-effectiveness of AC interference mitigation designs with integrated electromagnetic field modeling [A]. Corrosion/2005 [C]. Houston, TX: NACE, 2005, paper No.05623

[47] Southey R D, Ruan W, Dawalibi F P. AC mitigation requirements: A parametric analysis [A]. Corrosion/2001 [C]. Houston, TX: NACE, 2001, paper No.01604
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[4] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[6] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[9] 王希靖, 王博士, 杨超, 杨艳, 沈斌. 纯Ni母材及焊缝在熔融Na2SO4-K2SO4中热腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[10] 夏大海, 宋诗哲, 王吉会, 高志明, 胡文彬. 食品包装用镀锡薄钢板的腐蚀机理研究进展[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[11] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[12] 李伟,杜艳霞,姜子涛,路民旭. 电气化铁路对埋地管道交流干扰的研究进展[J]. 中国腐蚀与防护学报, 2016, 36(5): 381-388.
[13] 李琰,鲁金涛,杨珍,朱明,谷月峰. 烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[14] 张漫路,赵景茂. 缓蚀剂协同效应与协同机理的研究进展[J]. 中国腐蚀与防护学报, 2016, 36(1): 1-10.
[15] 孙冲, 王勇, 孙建波, 蒋涛, 赵卫民, 张彦春. 含杂质超临界CO2输送管线腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2015, 35(5): 379-385.