Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 37-48     CSTR: 32134.14.1005.4537.2025.144      DOI: 10.11902/1005.4537.2025.144
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
热处理工艺对增材制造金属零件腐蚀行为影响的研究进展
周丽1, 曹晓蝶1, 来佑彬1, 丁旺旺2, 韦博鑫3, 吴嘉俊1()
1.汕头大学智能制造技术教育部重点实验室 汕头 515063
2.电子科技大学(深圳)高等研究院 深圳 518100
3.中国科学院金属研究所 沈阳 110016
Research Progress in Influence of Heat Treatment on Corrosion Behavior of Additive Manufactured Parts
ZHOU Li1, CAO Xiaodie1, LAI Youbin1, DING Wangwang2, WEI Boxin3, WU Jiajun1()
1.Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou 515063, China
2.Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518100, China
3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

周丽, 曹晓蝶, 来佑彬, 丁旺旺, 韦博鑫, 吴嘉俊. 热处理工艺对增材制造金属零件腐蚀行为影响的研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
Li ZHOU, Xiaodie CAO, Youbin LAI, Wangwang DING, Boxin WEI, Jiajun WU. Research Progress in Influence of Heat Treatment on Corrosion Behavior of Additive Manufactured Parts[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 37-48.

全文: PDF(16684 KB)   HTML
摘要: 

增材制造(AM)作为先进制造技术,广泛应用于航空航天、医疗和汽车等领域。然而,由于其快速熔凝与逐层堆积的特性,易在成形件中引入孔隙、未熔合、残余拉应力和表面粗糙等缺陷,进而在复杂服役环境下诱发点蚀、晶间腐蚀和应力腐蚀开裂等腐蚀问题,严重影响增材制造零件的耐腐蚀性能。因此,为提升增材制造零件的耐腐蚀性,热处理工艺被广泛应用于其后处理过程中。本文系统综述了增材制造零件的腐蚀行为特征及其影响因素,重点分析了退火、固溶处理和热等静压3种典型热处理工艺的作用机制及其对腐蚀行为的影响。研究表明,合理的热处理工艺可通过释放残余应力、优化晶粒形貌与调节元素分布,在提升材料力学性能的同时,显著增强其均匀腐蚀耐受性与局部腐蚀抗力。本综述旨在为增材制造金属材料的热处理工艺优化与腐蚀防护策略提供理论参考与技术支持。

关键词 增材制造热处理微观结构耐腐蚀性能    
Abstract

Additive Manufacturing (AM), as an advanced manufacturing technology, is widely used in fields such as aerospace, medical, and automotive industries. However, due to its characteristics of rapid melting and layer-by-layer stacking, it is prone to introducing defects such as porosity, residual tensile stress, and surface roughness in the formed parts. This can lead to corrosion problems such as pitting, intergranular corrosion, and stress corrosion cracking in complex service environments, severely affecting the corrosion resistance and mechanical properties of AM parts. Therefore, heat treatment processes are widely applied in the post-processing of AM parts to enhance their corrosion resistance. In this article, the corrosion behavior characteristics of additive manufacturing parts and the relevant influencing factors are reviewed, focusing on the three typical heat treatment processes: annealing, solution treatment, and hot isostatic pressing, as well as their effects on corrosion behavior. It follows that an appropriate heat treatment process can significantly enhance the uniform corrosion resistance and localized corrosion resistance of materials while improving their mechanical properties by releasing residual stress, optimizing grain morphology, and adjusting element distribution. This review aims to provide a reference for the optimization of heat treatment processes and corrosion protection strategies for additive manufacturing metallic materials.

Key wordsadditive manufacturing    heat treatment    microstructure    corrosion resistance
收稿日期: 2025-05-11      32134.14.1005.4537.2025.144
ZTFLH:  TG174  
基金资助:广东省基础与应用基础研究基金(2024A1515011011);汕头大学科研启动金项目(NTF22001);中国博士后科学基金(GZC20230368);中国博士后科学基金(2024M750345)
通讯作者: 吴嘉俊,E-mail:jiajunwu@stu.edu.cn,研究方向为金属增材制造
作者简介: 周丽,女,2000 年生,汕头大学工学院机械专业,硕士生,主要研究方向为金属增材制造。
吴嘉俊,博士,汕头大学讲师,硕士生导师,汕头市高层次人才。2016年本科毕业于北京化工大学过程装备与控制工程专业,2021 年博士毕业于中国科学院沈阳自动化研究所机械制造及其自动化专业。2021年10月加入汕头大学并工作至今。主要从事激光冲击强化、金属增材制造等方面的研究工作。先后主持包括广东省基础与应用基础研究项目、广东省研究生教育创新计划项目、教育部产学合作协同育人项目和教育部供需对接就业育人项目等课题10余项,先后发表SCI论文近30篇,申请专利10余项,制定团体标准2项。
图1  气孔示意图[6]及LOF孔隙示意图[8]
图2  SLMed 316L不锈钢腐蚀形态的SEM图像[15]
图3  典型增材制造金属的凝固裂纹[21]
图4  退火处理后增材制造Ti-6Al-4V合金中的α′转变为α + β[30]
图5  固溶处理后Inconel 718合金中有害相(Laves相)溶解[32]
图6  热等静压(HIP)工艺示意图[38]
图7  增材制造Ti-6Al-4V合金中两种典型的针状马氏体(α′相)[41]
表1  不同退火温度对增材制造 Ti-6Al-4V合金的影响
图8  在3.5%NaCl溶液中通过不同工艺制备的Inconel 718试样的电化学腐蚀参数[52]
图9  HIP处理前后AM 316L不锈钢的孔隙率变化(XCT扫描结果)[54]
图10  LPBF-316L样品在室温下在3.5%NaCl溶液中进行动电位极化测试后表面微观形貌[55]
[1] Malakizadi A, Mallipeddi D, Dadbakhsh S, et al. Post-processing of additively manufactured metallic alloys-a review [J]. Int. J. Mach. Tools Manuf., 2022, 179: 103908
doi: 10.1016/j.ijmachtools.2022.103908
[2] Hemmasian Ettefagh A, Guo S M, Raush J. Corrosion performance of additively manufactured stainless steel parts: a review [J]. Addit. Manuf., 2021, 37: 101689
[3] Sander G, Tan J, Balan P, et al. Corrosion of additively manufactured alloys: a review [J]. Corrosion, 2018, 74: 1318
doi: 10.5006/2926
[4] Kocich R, Kunčická L, Benč M, et al. Corrosion behavior of selective laser melting-manufactured bio-applicable 316L stainless steel in ionized simulated body fluid [J]. Int. J. Bioprint., 2024, 10: 1416
doi: 10.36922/ijb.1416
[5] Ling D, He K, Yu L, et al. Finite element simulation of pitting corrosion of super 13Cr stainless steel in high-temperature and high-pressured CO2 containing artificial formation waters [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 303
[5] 凌 东, 何 坤, 余 靓 等. 高温高压CO2环境中超级13Cr不锈钢点蚀有限元模拟 [J]. 中国腐蚀与防护学报, 2024, 44: 303
[6] Ge J, Pillay S, Ning H B. Post-process treatments for additive-manufactured metallic structures: A comprehensive review [J]. J. Mater. Eng. Perform., 2023, 32: 7073
doi: 10.1007/s11665-023-08051-9
[7] Peng Q, Dong S Y, Yan S X, et al. An overview of defects in laser melting deposition forming products and the corresponding controlling methods [J]. Mater. Rep., 2018, 32: 2666
[7] 彭 谦, 董世运, 闫世兴 等. 激光熔化沉积成形缺陷及其控制方法综述 [J]. 材料导报, 2018, 32: 2666
[8] Schindelholz E J, Melia M A, Rodelas J M. Corrosion of additively manufactured stainless steels—process, structure, performance: a review [J]. Corrosion, 2021, 77: 484
doi: 10.5006/3741
[9] Laleh M, Hughes A E, Yang S M, et al. Two and three-dimensional characterisation of localised corrosion affected by lack-of-fusion pores in 316L stainless steel produced by selective laser melting [J]. Corros. Sci., 2020, 165: 108394
doi: 10.1016/j.corsci.2019.108394
[10] Sun Y, Moroz A, Alrbaey K. Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel [J]. J. Mater. Eng. Perform., 2014, 23: 518
doi: 10.1007/s11665-013-0784-8
[11] Tang Y B, Shen X W, Liu Z H, et al. Corrosion behaviors of selective laser melted Inconel 718 alloy in NaOH solution [J]. Acta Metall. Sin., 2022, 58: 324
doi: 10.11900/0412.1961.2021.00386
[11] 汤雁冰, 沈新旺, 刘志红 等. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为 [J]. 金属学报, 2022, 58: 324
doi: 10.11900/0412.1961.2021.00386
[12] Vasylyev M O, Mordyuk B M, Voloshko S M. Post-processing of Inconel 718 alloy fabricated by additive manufacturing: Selective laser melting [J]. Prog. Phys. Met., 2024, 25:614
[13] Leon A, Aghion E. Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM) [J]. Mater. Charact., 2017, 131: 188
doi: 10.1016/j.matchar.2017.06.029
[14] Shang Q, Man C, Pang K, et al. Mechanism of post-heat treatment on intergranular corrosion behavior of SLM-316L stainless steel with different carbon contents [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1273
[14] 商 强, 满 成, 逄 昆 等. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1273
[15] Qi X Y, Gao X, Ma C, et al. Effect of heat treatment on the intergranular corrosion of 316L stainless steel fabricated by selective laser melting [J]. Mater. Charact., 2025, 220: 114648
doi: 10.1016/j.matchar.2024.114648
[16] Man C, Duan Z W, Cui Z Y, et al. The effect of sub-grain structure on intergranular corrosion of 316L stainless steel fabricated via selective laser melting [J]. Mater. Lett., 2019, 243: 157
doi: 10.1016/j.matlet.2019.02.047
[17] Chu F Z, Zhang X, Huang W J, et al. The formation mechanism and effect on mechanical properties of defects of aluminum alloy by selective laser melting: a review [J]. Mater. Rep., 2021, 35: 11111
[17] 褚夫众, 张 曦, 黄文静 等. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响: 综述 [J]. 材料导报, 2021, 35: 11111
[18] Wang R X, Chen C Y, Xu S Z, et al. A critical review on residual stress in laser additive manufacturing: formation mechanism, characterization and control method [J]. J. Mater. Eng., 2024, 52(7): 15
[18] 王瑞鑫, 陈超越, 徐松哲 等. 激光增材制造中残余应力形成机理、表征及调控方法的研究进展 [J]. 材料工程, 2024, 52(7): 15
[19] Zhao J X, Dan Z H, Sun Z G, et al. Research progress in stress corrosion of additively manufactured 316L stainless steels [J]. J. Mater. Eng., 2023, 51(5): 1
doi: 10.11868/j.issn.1001-4381.2022.000515
[19] 招晶鑫, 淡振华, 孙中刚 等. 增材制造316L不锈钢应力腐蚀研究进展 [J]. 材料工程, 2023, 51(5): 1
doi: 10.11868/j.issn.1001-4381.2022.000515
[20] Salmi A, Atzeni E, Iuliano L, et al. Experimental analysis of residual stresses on AlSi10Mg parts produced by means of Selective Laser Melting (SLM) [J]. Procedia Cirp, 2017, 62: 458
doi: 10.1016/j.procir.2016.06.030
[21] Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing [J]. Acta Mater., 2021, 202: 417
doi: 10.1016/j.actamat.2020.09.023
[22] Tong Z P, Ren X D, Jiao J F, et al. Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: Effect of heat treatment on microstructure, residual stress and mechanical property [J]. J. Alloy. Compd., 2019, 785: 1144
doi: 10.1016/j.jallcom.2019.01.213
[23] Syed A K, Ahmad B, Guo H, et al. An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti6Al4V [J]. Mater. Sci. Eng., 2019, 755A: 246
[24] Hu Y L, Lin X, Zhang S Y, et al. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming [J]. J. Alloy. Compd., 2018, 767: 330
doi: 10.1016/j.jallcom.2018.07.087
[25] Su J L, Jiang F L, Teng J, et al. Laser additive manufacturing of titanium alloys: Process, materials and post-processing [J]. Rare Met., 2024, 43: 6288
doi: 10.1007/s12598-024-02685-x
[26] Zhao Y S, Ding C G. Effect of heat treatment on microstructure and properties of 24CrNiMo alloy steel formed by selective laser melting (SLM) [J]. Materials, 2021, 14: 631
doi: 10.3390/ma14030631
[27] Li H, Li G X, Gao R L, et al. Research progress of post-processing of stainless steel additive manufacturing parts [J]. Acta Aeronaut. Astronaut. Sin., 2022, 43: 525847
[27] 李 汇, 李光先, 高瑞麟 等. 不锈钢增材制造件后处理工艺研究进展 [J]. 航空学报, 2022, 43: 525847
[28] Ren D C, LI S J, Wang H, et al. Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique [J]. J. Mater. Sci. Technol., 2019, 35: 285
doi: 10.1016/j.jmst.2018.09.066
[29] Nie J J, Ma P Y, Sun J L, et al. Study on high temperature mechanical properties and corrosion behavior of selective laser melted TC4 alloy [J]. Rare Met. Mater. Eng., 2023, 52: 2126
[29] 聂敬敬, 马平义, 孙京丽 等. 选区激光熔化TC4合金高温力学性能及腐蚀行为研究 [J]. 稀有金属材料与工程, 2023, 52: 2126
[30] He J J, Li D S, Jiang W G, et al. The martensitic transformation and mechanical properties of Ti6Al4V prepared via selective laser melting [J]. Materials, 2019, 12: 321
doi: 10.3390/ma12020321
[31] Ghio E, Cerri E. Additive manufacturing of AlSi10Mg and Ti6Al4V lightweight alloys via laser powder bed fusion: A review of heat treatments effects [J]. Materials, 2022, 15: 2047
doi: 10.3390/ma15062047
[32] Huang W P, Yang J J, Yang H H, et al. Heat treatment of Inconel 718 produced by selective laser melting: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, 750A: 98
[33] Mythreyi O V, Nagesha B K, Jayaganthan R. Microstructural evolution & corrosion behavior of Laser-powder-bed-fused Inconel 718 subjected to surface and heat treatments [J]. J. Mater. Res. Technol., 2022, 19: 3201
doi: 10.1016/j.jmrt.2022.05.123
[34] Naskar S, Suryakumar S, Panigrahi B B. Post-processing of Inconel 718 superalloy by Laser-based powder bed fusion: Microstructures and properties evaluation [J]. Mater. Sci. Eng., 2025, 921A: 147601
[35] Lü H, Yang Z B, Wang X, et al. Microstructures and tensile properties of GH4099 alloy fabricated by laser additive manufacturing after heat treatment [J]. Chin. J. Lasers, 2018, 45: 1002003
doi: 10.3788/CJL
[35] 吕 豪, 杨志斌, 王 鑫 等. 激光增材制造GH4099合金热处理后的显微组织及拉伸性能 [J]. 中国激光, 2018, 45: 1002003
[36] Ariaseta A, Kobayashi S, Takeyama M, et al. Characterization of recrystallization and second-phase particles in solution-treated additively manufactured alloy 718 [J]. Metall. Mater. Trans., 2020, 51A: 973
[37] Leon A, Levy G K, Ron T, et al. The effect of hot isostatic pressure on the corrosion performance of Ti-6Al-4V produced by an electron-beam melting additive manufacturing process [J]. Addit. Manuf., 2020, 33: 101039
[38] Atkinson H V, Davies S. Fundamental aspects of hot isostatic pressing: an overview [J]. Metall. Mater. Trans., 2000, 31A: 2981
[39] Luo H, Li X Q, Pan C L, et al. Effects of hot isostatic pressing on microstructure and mechanical properties of selective laser melted Inconel 718 alloy in different directions [J]. Surf. Technol., 2022, 51(3): 333
[39] 罗 浩, 李小强, 潘存良 等. 热等静压处理对选区激光熔化成形Inconel 718合金各向组织及力学性能的影响 [J]. 表面技术, 2022, 51(3): 333
[40] Masuo H, Tanaka Y, Morokoshi S, et al. Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing [J]. Int. J. Fatigue, 2018, 117: 163
doi: 10.1016/j.ijfatigue.2018.07.020
[41] Pegues J W, Shao S, Shamsaei N, et al. Fatigue of additive manufactured Ti-6Al-4V, part I: The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects [J]. Int. J. Fatigue, 2020, 132: 105358
doi: 10.1016/j.ijfatigue.2019.105358
[42] Yang H H, Yang J J, Yu H C, et al. Corrosion behaviour of selective laser melted TC4 alloy [J]. J. Mater. Eng., 2018, 46(8): 127
[42] 杨慧慧, 杨晶晶, 喻寒琛 等. 激光选区熔化成形TC4合金腐蚀行为 [J]. 材料工程, 2018, 46(8): 127
doi: 10.11868/j.issn.1001-4381.2016.001430
[43] Qin H X, Yuan J Q, Bi C L, et al. Research progress in heat treatment of laser additively manufactured titanium alloys [J]. New Technol. New Process, 2024, (11): 24
[43] 覃红星, 袁建奇, 毕成龙 等. 激光增材制造钛合金热处理研究进展 [J]. 新技术新工艺, 2024, (11): 24
[44] Hemmasian Ettefagh A, Zeng C Y, Guo S M, et al. Corrosion behavior of additively manufactured Ti-6Al-4V parts and the effect of post annealing [J]. Addit. Manuf., 2019, 28: 252
doi: 10.1016/j.addma.2019.05.011
[45] Seo D I, Lee J B. Influence of heat treatment parameters on the corrosion resistance of additively manufactured Ti-6Al-4V alloy [J]. J. Electrochem. Soc., 2020, 167: 101509
doi: 10.1149/1945-7111/ab9d64
[46] Wang M K, Wu Y W, Lu S H, et al. Fabrication and characterization of selective laser melting printed Ti-6Al-4V alloys subjected to heat treatment for customized implants design [J]. Prog. Nat. Sci.: Mater. Int., 2016, 26: 671
doi: 10.1016/j.pnsc.2016.12.006
[47] Bai H J, Deng H, Chen L Q, et al. Effect of heat treatment on the microstructure and mechanical properties of selective laser-melted Ti64 and Ti-5Al-5Mo-5V-1Cr-1Fe [J]. Metals, 2021, 11: 534
doi: 10.3390/met11040534
[48] Yan X C, Yin S, Chen C Y, et al. Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting [J]. J. Alloy. Compd., 2018, 764: 1056
doi: 10.1016/j.jallcom.2018.06.076
[49] Anantharam G S, Nair R, Sivan A, et al. Effect of post-processing on the corrosive behaviour of L-DED Ti-6Al-4V [J]. Mater. Lett., 2024, 373: 137143
doi: 10.1016/j.matlet.2024.137143
[50] Chao Q, Thomas S, Birbilis N, et al. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel [J]. Mater. Sci. Eng., 2021, 821A: 141611
[51] Mythreyi O V, Raja A, Nagesha B K, et al. Corrosion study of selective laser melted IN718 alloy upon post heat treatment and shot peening [J]. Metals, 2020, 10: 1562
doi: 10.3390/met10121562
[52] Luo S C, Huang W P, Yang H H, et al. Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments [J]. Addit. Manuf., 2019, 30: 100875
[53] Bedmar J, García-Rodríguez S, Roldán M, et al. Effects of the heat treatment on the microstructure and corrosion behavior of 316L stainless steel manufactured by Laser Powder Bed Fusion [J]. Corros. Sci., 2022, 209: 110777
doi: 10.1016/j.corsci.2022.110777
[54] Lee S, Ghiaasiaan R, Gradl P R, et al. Additively manufactured 316L stainless steel via laser powder directed energy deposition (LP-DED): Mechanical properties at cryogenic and elevated temperatures [J]. Int. J. Fatigue, 2024, 182: 108197
doi: 10.1016/j.ijfatigue.2024.108197
[55] Aghayar Y, Shahriari A, Shakerian M, et al. Microstructure tailoring of laser powder bed fused 316L impellers for enhanced mechanical properties and optimum electrochemical characteristics through hot isostatic pressing [J]. Mater. Sci. Eng., 2025, 925A: 147916
[56] Lavery N P, Cherry J, Mehmood S, et al. Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion [J]. Mater. Sci. Eng., 2017, 693A: 186
[57] Cegan T, Pagac M, Jurica J, et al. Effect of hot isostatic pressing on porosity and mechanical properties of 316 L stainless steel prepared by the selective laser melting method [J]. Materials, 2020, 13: 4377
doi: 10.3390/ma13194377
[58] Álvarez G, Harris Z, Wada K, et al. Hydrogen embrittlement susceptibility of additively manufactured 316L stainless steel: Influence of post-processing, printing direction, temperature and pre-straining [J]. Addit. Manuf., 2023, 78: 103834
[59] Shin W S, Son B, Song W S, et al. Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting [J]. Mater. Sci. Eng., 2021, 806A: 140805
[60] Que Z Q, Riipinen T, Ferreirós P, et al. Effects of surface finishes, heat treatments and printing orientations on stress corrosion cracking behavior of laser powder bed fusion 316L stainless steel in high-temperature water [J]. Corros. Sci., 2024, 233: 112118
doi: 10.1016/j.corsci.2024.112118
[1] 兰博韬, 吴斌, 明洪亮, 王俭秋, 韩恩厚. 选区激光熔化奥氏体不锈钢高温高压水中应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 1-14.
[2] 戴念维, 窦欣懿, 刘华剑, 冷滨. 增材制造合金在核能领域应用中的腐蚀研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 15-24.
[3] 衣俊达, 冷傲, 宫得伦, 韦博鑫. 低模量耐腐蚀亚稳 β 钛合金的电子束增材制造与性能研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 49-59.
[4] 张俊男, 彭灿, 付琦, 张亮, 宋光铃. 海洋环境中铜绿假单胞菌对增材制造Al-Mg-Sc-Zr合金腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 60-70.
[5] 祝丁丁, 赵希雅, 张晓美, 梅子期, 逯文君, 王帅. 增材制造与铸造钛铝合金的微观组织及高温氧化行为对比研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 71-80.
[6] 苏宝献, 高如心, 朱国强, 姜博涛, 王斌斌, 刘琛, 于永生, 王亮, 苏彦庆. 热处理工艺对电子束熔丝沉积Ti-6Al-3Nb-2Zr-1Mo合金微观组织与腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 81-91.
[7] 李柯萱, 王义朋, 廖伯凯. 电弧送丝增材、激光选区熔化增材和传统TC4钛合金钝化行为的对比研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 186-192.
[8] 庞曰艺, 张立波, 宁方强, 赵志坡, 闫宏, 刘佳. δ-铁素体对增材制造304L不锈钢液态铅铋腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 193-199.
[9] 白英雄, 王艳丽, 李相伟, 吴泽峰, 张书彦. 热处理对激光选区熔化GH4099镍基高温合金900 ℃(75%Na2SO4 + 25%NaCl)热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1709-1716.
[10] 刘鹏鹤, 薛丽莉, 许立坤, 辛永磊, 郭明帅, 周帅, 段体岗. 钛基体阴极充氢处理对RuO2-IrO2-TiO2 阳极微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1277-1288.
[11] 何武豪, 刘阳, 杨思懿, 张韶栋, 吴伟, 张俊喜. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[12] 雷涛, 陈绍高, 刘秀利, 范金龙, 郑兴文. 乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[13] 李茂, 邓轲, 陈衍祥, 刘中豪, 李尚, 郭宇婷, 董选普, 曹华堂. N2 流量和靶基距对多弧离子镀沉积AlSiN纳米复合涂层的微观组织及耐腐蚀性能影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[14] 冉仁豪, 单慧琳, 张鹏杰, 汪冬梅, 斯佳佳, 徐光青, 吕珺. 表层镁合金化NdFeB磁体的制备及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[15] 赵立佳, 崔新宇, 王吉强, 熊天英. 冷喷涂B4C/Al复合涂层在硼酸溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.