|
|
|
| 热处理工艺对增材制造金属零件腐蚀行为影响的研究进展 |
周丽1, 曹晓蝶1, 来佑彬1, 丁旺旺2, 韦博鑫3, 吴嘉俊1( ) |
1.汕头大学智能制造技术教育部重点实验室 汕头 515063 2.电子科技大学(深圳)高等研究院 深圳 518100 3.中国科学院金属研究所 沈阳 110016 |
|
| Research Progress in Influence of Heat Treatment on Corrosion Behavior of Additive Manufactured Parts |
ZHOU Li1, CAO Xiaodie1, LAI Youbin1, DING Wangwang2, WEI Boxin3, WU Jiajun1( ) |
1.Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou 515063, China 2.Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518100, China 3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
周丽, 曹晓蝶, 来佑彬, 丁旺旺, 韦博鑫, 吴嘉俊. 热处理工艺对增材制造金属零件腐蚀行为影响的研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
Li ZHOU,
Xiaodie CAO,
Youbin LAI,
Wangwang DING,
Boxin WEI,
Jiajun WU.
Research Progress in Influence of Heat Treatment on Corrosion Behavior of Additive Manufactured Parts[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 37-48.
| [1] |
Malakizadi A, Mallipeddi D, Dadbakhsh S, et al. Post-processing of additively manufactured metallic alloys-a review [J]. Int. J. Mach. Tools Manuf., 2022, 179: 103908
doi: 10.1016/j.ijmachtools.2022.103908
|
| [2] |
Hemmasian Ettefagh A, Guo S M, Raush J. Corrosion performance of additively manufactured stainless steel parts: a review [J]. Addit. Manuf., 2021, 37: 101689
|
| [3] |
Sander G, Tan J, Balan P, et al. Corrosion of additively manufactured alloys: a review [J]. Corrosion, 2018, 74: 1318
doi: 10.5006/2926
|
| [4] |
Kocich R, Kunčická L, Benč M, et al. Corrosion behavior of selective laser melting-manufactured bio-applicable 316L stainless steel in ionized simulated body fluid [J]. Int. J. Bioprint., 2024, 10: 1416
doi: 10.36922/ijb.1416
|
| [5] |
Ling D, He K, Yu L, et al. Finite element simulation of pitting corrosion of super 13Cr stainless steel in high-temperature and high-pressured CO2 containing artificial formation waters [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 303
|
| [5] |
凌 东, 何 坤, 余 靓 等. 高温高压CO2环境中超级13Cr不锈钢点蚀有限元模拟 [J]. 中国腐蚀与防护学报, 2024, 44: 303
|
| [6] |
Ge J, Pillay S, Ning H B. Post-process treatments for additive-manufactured metallic structures: A comprehensive review [J]. J. Mater. Eng. Perform., 2023, 32: 7073
doi: 10.1007/s11665-023-08051-9
|
| [7] |
Peng Q, Dong S Y, Yan S X, et al. An overview of defects in laser melting deposition forming products and the corresponding controlling methods [J]. Mater. Rep., 2018, 32: 2666
|
| [7] |
彭 谦, 董世运, 闫世兴 等. 激光熔化沉积成形缺陷及其控制方法综述 [J]. 材料导报, 2018, 32: 2666
|
| [8] |
Schindelholz E J, Melia M A, Rodelas J M. Corrosion of additively manufactured stainless steels—process, structure, performance: a review [J]. Corrosion, 2021, 77: 484
doi: 10.5006/3741
|
| [9] |
Laleh M, Hughes A E, Yang S M, et al. Two and three-dimensional characterisation of localised corrosion affected by lack-of-fusion pores in 316L stainless steel produced by selective laser melting [J]. Corros. Sci., 2020, 165: 108394
doi: 10.1016/j.corsci.2019.108394
|
| [10] |
Sun Y, Moroz A, Alrbaey K. Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel [J]. J. Mater. Eng. Perform., 2014, 23: 518
doi: 10.1007/s11665-013-0784-8
|
| [11] |
Tang Y B, Shen X W, Liu Z H, et al. Corrosion behaviors of selective laser melted Inconel 718 alloy in NaOH solution [J]. Acta Metall. Sin., 2022, 58: 324
doi: 10.11900/0412.1961.2021.00386
|
| [11] |
汤雁冰, 沈新旺, 刘志红 等. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为 [J]. 金属学报, 2022, 58: 324
doi: 10.11900/0412.1961.2021.00386
|
| [12] |
Vasylyev M O, Mordyuk B M, Voloshko S M. Post-processing of Inconel 718 alloy fabricated by additive manufacturing: Selective laser melting [J]. Prog. Phys. Met., 2024, 25:614
|
| [13] |
Leon A, Aghion E. Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM) [J]. Mater. Charact., 2017, 131: 188
doi: 10.1016/j.matchar.2017.06.029
|
| [14] |
Shang Q, Man C, Pang K, et al. Mechanism of post-heat treatment on intergranular corrosion behavior of SLM-316L stainless steel with different carbon contents [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1273
|
| [14] |
商 强, 满 成, 逄 昆 等. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1273
|
| [15] |
Qi X Y, Gao X, Ma C, et al. Effect of heat treatment on the intergranular corrosion of 316L stainless steel fabricated by selective laser melting [J]. Mater. Charact., 2025, 220: 114648
doi: 10.1016/j.matchar.2024.114648
|
| [16] |
Man C, Duan Z W, Cui Z Y, et al. The effect of sub-grain structure on intergranular corrosion of 316L stainless steel fabricated via selective laser melting [J]. Mater. Lett., 2019, 243: 157
doi: 10.1016/j.matlet.2019.02.047
|
| [17] |
Chu F Z, Zhang X, Huang W J, et al. The formation mechanism and effect on mechanical properties of defects of aluminum alloy by selective laser melting: a review [J]. Mater. Rep., 2021, 35: 11111
|
| [17] |
褚夫众, 张 曦, 黄文静 等. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响: 综述 [J]. 材料导报, 2021, 35: 11111
|
| [18] |
Wang R X, Chen C Y, Xu S Z, et al. A critical review on residual stress in laser additive manufacturing: formation mechanism, characterization and control method [J]. J. Mater. Eng., 2024, 52(7): 15
|
| [18] |
王瑞鑫, 陈超越, 徐松哲 等. 激光增材制造中残余应力形成机理、表征及调控方法的研究进展 [J]. 材料工程, 2024, 52(7): 15
|
| [19] |
Zhao J X, Dan Z H, Sun Z G, et al. Research progress in stress corrosion of additively manufactured 316L stainless steels [J]. J. Mater. Eng., 2023, 51(5): 1
doi: 10.11868/j.issn.1001-4381.2022.000515
|
| [19] |
招晶鑫, 淡振华, 孙中刚 等. 增材制造316L不锈钢应力腐蚀研究进展 [J]. 材料工程, 2023, 51(5): 1
doi: 10.11868/j.issn.1001-4381.2022.000515
|
| [20] |
Salmi A, Atzeni E, Iuliano L, et al. Experimental analysis of residual stresses on AlSi10Mg parts produced by means of Selective Laser Melting (SLM) [J]. Procedia Cirp, 2017, 62: 458
doi: 10.1016/j.procir.2016.06.030
|
| [21] |
Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing [J]. Acta Mater., 2021, 202: 417
doi: 10.1016/j.actamat.2020.09.023
|
| [22] |
Tong Z P, Ren X D, Jiao J F, et al. Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: Effect of heat treatment on microstructure, residual stress and mechanical property [J]. J. Alloy. Compd., 2019, 785: 1144
doi: 10.1016/j.jallcom.2019.01.213
|
| [23] |
Syed A K, Ahmad B, Guo H, et al. An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti6Al4V [J]. Mater. Sci. Eng., 2019, 755A: 246
|
| [24] |
Hu Y L, Lin X, Zhang S Y, et al. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming [J]. J. Alloy. Compd., 2018, 767: 330
doi: 10.1016/j.jallcom.2018.07.087
|
| [25] |
Su J L, Jiang F L, Teng J, et al. Laser additive manufacturing of titanium alloys: Process, materials and post-processing [J]. Rare Met., 2024, 43: 6288
doi: 10.1007/s12598-024-02685-x
|
| [26] |
Zhao Y S, Ding C G. Effect of heat treatment on microstructure and properties of 24CrNiMo alloy steel formed by selective laser melting (SLM) [J]. Materials, 2021, 14: 631
doi: 10.3390/ma14030631
|
| [27] |
Li H, Li G X, Gao R L, et al. Research progress of post-processing of stainless steel additive manufacturing parts [J]. Acta Aeronaut. Astronaut. Sin., 2022, 43: 525847
|
| [27] |
李 汇, 李光先, 高瑞麟 等. 不锈钢增材制造件后处理工艺研究进展 [J]. 航空学报, 2022, 43: 525847
|
| [28] |
Ren D C, LI S J, Wang H, et al. Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique [J]. J. Mater. Sci. Technol., 2019, 35: 285
doi: 10.1016/j.jmst.2018.09.066
|
| [29] |
Nie J J, Ma P Y, Sun J L, et al. Study on high temperature mechanical properties and corrosion behavior of selective laser melted TC4 alloy [J]. Rare Met. Mater. Eng., 2023, 52: 2126
|
| [29] |
聂敬敬, 马平义, 孙京丽 等. 选区激光熔化TC4合金高温力学性能及腐蚀行为研究 [J]. 稀有金属材料与工程, 2023, 52: 2126
|
| [30] |
He J J, Li D S, Jiang W G, et al. The martensitic transformation and mechanical properties of Ti6Al4V prepared via selective laser melting [J]. Materials, 2019, 12: 321
doi: 10.3390/ma12020321
|
| [31] |
Ghio E, Cerri E. Additive manufacturing of AlSi10Mg and Ti6Al4V lightweight alloys via laser powder bed fusion: A review of heat treatments effects [J]. Materials, 2022, 15: 2047
doi: 10.3390/ma15062047
|
| [32] |
Huang W P, Yang J J, Yang H H, et al. Heat treatment of Inconel 718 produced by selective laser melting: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, 750A: 98
|
| [33] |
Mythreyi O V, Nagesha B K, Jayaganthan R. Microstructural evolution & corrosion behavior of Laser-powder-bed-fused Inconel 718 subjected to surface and heat treatments [J]. J. Mater. Res. Technol., 2022, 19: 3201
doi: 10.1016/j.jmrt.2022.05.123
|
| [34] |
Naskar S, Suryakumar S, Panigrahi B B. Post-processing of Inconel 718 superalloy by Laser-based powder bed fusion: Microstructures and properties evaluation [J]. Mater. Sci. Eng., 2025, 921A: 147601
|
| [35] |
Lü H, Yang Z B, Wang X, et al. Microstructures and tensile properties of GH4099 alloy fabricated by laser additive manufacturing after heat treatment [J]. Chin. J. Lasers, 2018, 45: 1002003
doi: 10.3788/CJL
|
| [35] |
吕 豪, 杨志斌, 王 鑫 等. 激光增材制造GH4099合金热处理后的显微组织及拉伸性能 [J]. 中国激光, 2018, 45: 1002003
|
| [36] |
Ariaseta A, Kobayashi S, Takeyama M, et al. Characterization of recrystallization and second-phase particles in solution-treated additively manufactured alloy 718 [J]. Metall. Mater. Trans., 2020, 51A: 973
|
| [37] |
Leon A, Levy G K, Ron T, et al. The effect of hot isostatic pressure on the corrosion performance of Ti-6Al-4V produced by an electron-beam melting additive manufacturing process [J]. Addit. Manuf., 2020, 33: 101039
|
| [38] |
Atkinson H V, Davies S. Fundamental aspects of hot isostatic pressing: an overview [J]. Metall. Mater. Trans., 2000, 31A: 2981
|
| [39] |
Luo H, Li X Q, Pan C L, et al. Effects of hot isostatic pressing on microstructure and mechanical properties of selective laser melted Inconel 718 alloy in different directions [J]. Surf. Technol., 2022, 51(3): 333
|
| [39] |
罗 浩, 李小强, 潘存良 等. 热等静压处理对选区激光熔化成形Inconel 718合金各向组织及力学性能的影响 [J]. 表面技术, 2022, 51(3): 333
|
| [40] |
Masuo H, Tanaka Y, Morokoshi S, et al. Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing [J]. Int. J. Fatigue, 2018, 117: 163
doi: 10.1016/j.ijfatigue.2018.07.020
|
| [41] |
Pegues J W, Shao S, Shamsaei N, et al. Fatigue of additive manufactured Ti-6Al-4V, part I: The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects [J]. Int. J. Fatigue, 2020, 132: 105358
doi: 10.1016/j.ijfatigue.2019.105358
|
| [42] |
Yang H H, Yang J J, Yu H C, et al. Corrosion behaviour of selective laser melted TC4 alloy [J]. J. Mater. Eng., 2018, 46(8): 127
|
| [42] |
杨慧慧, 杨晶晶, 喻寒琛 等. 激光选区熔化成形TC4合金腐蚀行为 [J]. 材料工程, 2018, 46(8): 127
doi: 10.11868/j.issn.1001-4381.2016.001430
|
| [43] |
Qin H X, Yuan J Q, Bi C L, et al. Research progress in heat treatment of laser additively manufactured titanium alloys [J]. New Technol. New Process, 2024, (11): 24
|
| [43] |
覃红星, 袁建奇, 毕成龙 等. 激光增材制造钛合金热处理研究进展 [J]. 新技术新工艺, 2024, (11): 24
|
| [44] |
Hemmasian Ettefagh A, Zeng C Y, Guo S M, et al. Corrosion behavior of additively manufactured Ti-6Al-4V parts and the effect of post annealing [J]. Addit. Manuf., 2019, 28: 252
doi: 10.1016/j.addma.2019.05.011
|
| [45] |
Seo D I, Lee J B. Influence of heat treatment parameters on the corrosion resistance of additively manufactured Ti-6Al-4V alloy [J]. J. Electrochem. Soc., 2020, 167: 101509
doi: 10.1149/1945-7111/ab9d64
|
| [46] |
Wang M K, Wu Y W, Lu S H, et al. Fabrication and characterization of selective laser melting printed Ti-6Al-4V alloys subjected to heat treatment for customized implants design [J]. Prog. Nat. Sci.: Mater. Int., 2016, 26: 671
doi: 10.1016/j.pnsc.2016.12.006
|
| [47] |
Bai H J, Deng H, Chen L Q, et al. Effect of heat treatment on the microstructure and mechanical properties of selective laser-melted Ti64 and Ti-5Al-5Mo-5V-1Cr-1Fe [J]. Metals, 2021, 11: 534
doi: 10.3390/met11040534
|
| [48] |
Yan X C, Yin S, Chen C Y, et al. Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting [J]. J. Alloy. Compd., 2018, 764: 1056
doi: 10.1016/j.jallcom.2018.06.076
|
| [49] |
Anantharam G S, Nair R, Sivan A, et al. Effect of post-processing on the corrosive behaviour of L-DED Ti-6Al-4V [J]. Mater. Lett., 2024, 373: 137143
doi: 10.1016/j.matlet.2024.137143
|
| [50] |
Chao Q, Thomas S, Birbilis N, et al. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel [J]. Mater. Sci. Eng., 2021, 821A: 141611
|
| [51] |
Mythreyi O V, Raja A, Nagesha B K, et al. Corrosion study of selective laser melted IN718 alloy upon post heat treatment and shot peening [J]. Metals, 2020, 10: 1562
doi: 10.3390/met10121562
|
| [52] |
Luo S C, Huang W P, Yang H H, et al. Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments [J]. Addit. Manuf., 2019, 30: 100875
|
| [53] |
Bedmar J, García-Rodríguez S, Roldán M, et al. Effects of the heat treatment on the microstructure and corrosion behavior of 316L stainless steel manufactured by Laser Powder Bed Fusion [J]. Corros. Sci., 2022, 209: 110777
doi: 10.1016/j.corsci.2022.110777
|
| [54] |
Lee S, Ghiaasiaan R, Gradl P R, et al. Additively manufactured 316L stainless steel via laser powder directed energy deposition (LP-DED): Mechanical properties at cryogenic and elevated temperatures [J]. Int. J. Fatigue, 2024, 182: 108197
doi: 10.1016/j.ijfatigue.2024.108197
|
| [55] |
Aghayar Y, Shahriari A, Shakerian M, et al. Microstructure tailoring of laser powder bed fused 316L impellers for enhanced mechanical properties and optimum electrochemical characteristics through hot isostatic pressing [J]. Mater. Sci. Eng., 2025, 925A: 147916
|
| [56] |
Lavery N P, Cherry J, Mehmood S, et al. Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion [J]. Mater. Sci. Eng., 2017, 693A: 186
|
| [57] |
Cegan T, Pagac M, Jurica J, et al. Effect of hot isostatic pressing on porosity and mechanical properties of 316 L stainless steel prepared by the selective laser melting method [J]. Materials, 2020, 13: 4377
doi: 10.3390/ma13194377
|
| [58] |
Álvarez G, Harris Z, Wada K, et al. Hydrogen embrittlement susceptibility of additively manufactured 316L stainless steel: Influence of post-processing, printing direction, temperature and pre-straining [J]. Addit. Manuf., 2023, 78: 103834
|
| [59] |
Shin W S, Son B, Song W S, et al. Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting [J]. Mater. Sci. Eng., 2021, 806A: 140805
|
| [60] |
Que Z Q, Riipinen T, Ferreirós P, et al. Effects of surface finishes, heat treatments and printing orientations on stress corrosion cracking behavior of laser powder bed fusion 316L stainless steel in high-temperature water [J]. Corros. Sci., 2024, 233: 112118
doi: 10.1016/j.corsci.2024.112118
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|