Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 233-240     CSTR: 32134.14.1005.4537.2025.096      DOI: 10.11902/1005.4537.2025.096
  研究报告 本期目录 | 过刊浏览 |
应力和光照共同作用下40Cr钢在3.5%NaCl溶液中的腐蚀行为研究
秦鹏飞1, 崔宇2, 刘叡1, 鞠鹏飞3(), 王福会1, 刘莉1()
1.东北大学 数字钢铁全国重点实验室 沈阳 110819
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3.上海航天设备制造厂 上海 200245
Corrosion Behavior of 40Cr Steel in 3.5%NaCl Solution Under Combined Effect of Stress and Ultraviolet Illumination
QIN Pengfei1, CUI Yu2, LIU Rui1, JU Pengfei3(), WANG Fuhui1, LIU Li1()
1.State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Shanghai Aerospace Equipment Manufacture, Shanghai 200245, China
引用本文:

秦鹏飞, 崔宇, 刘叡, 鞠鹏飞, 王福会, 刘莉. 应力和光照共同作用下40Cr钢在3.5%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 233-240.
Pengfei QIN, Yu CUI, Rui LIU, Pengfei JU, Fuhui WANG, Li LIU. Corrosion Behavior of 40Cr Steel in 3.5%NaCl Solution Under Combined Effect of Stress and Ultraviolet Illumination[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 233-240.

全文: PDF(12245 KB)   HTML
摘要: 

针对40Cr钢在塑性拉伸应力和紫外光共同作用下的腐蚀行为进行了研究。结果表明,光照加速了40Cr钢腐蚀,这主要归因于光照下合金表面形成的锈层具有较低的电荷转移电阻和更大的平带电位值,此外,紫外光照下蜂窝状内锈层的形成加速了NaCl在锈层内的聚积。塑性拉伸应力下40Cr钢表面形成的锈层更加疏松,且锈层具有更高的光电响应和更低的电荷转移电阻。这些因素导致在塑性拉伸应力和紫外光共同作用下40Cr钢的阳极溶解加速。

关键词 40Cr钢塑性拉伸应力紫外光照NaCl    
Abstract

The corrosion behavior of 40Cr steel in 3.5%NaCl solution under the combined effect of plastic tensile stress and ultraviolet (UV) illumination was investigated. The results demonstrate that UV illumination accelerates the corrosion of 40Cr steel, which is primarily attributed to the lower charge-transfer resistance and higher flat-band potential of the rust layer formed on the surface of the steel under illumination. Furthermore, the formation of a honeycomb inner rust layer under UV illumination facilitates the accumulation of NaCl within the rust layer. The rust layer formed on the surface of 40Cr steel under plastic tensile stress was more porous, exhibiting a higher photoelectric response and lower charge transfer resistance. These factors contributed to the accelerated anodic dissolution of 40Cr steel under the combined effect of plastic tensile stress and UV illumination.

Key words40Cr steel    plastic tensile stress    UV    NaCl
收稿日期: 2025-03-24      32134.14.1005.4537.2025.096
ZTFLH:  TG174  
基金资助:国家自然科学基金(U20B2026)
通讯作者: 刘 莉,E-mail:liuli@mail.neu.edu.cn,研究方向为金属腐蚀与防护;
鞠鹏飞,E-mail:jupengfei10@163.com,研究方向为材料表面改性技术
作者简介: 秦鹏飞,男,1991年生,博士生
图1  0%应变和6%应变40Cr钢在3.5%NaCl溶液中有无光照条件下的极化曲线
图2  有无光照条件下0%应变和6%应变40Cr钢在3.5%NaCl溶液中浸泡120 h的表面形貌
图3  不同实验条件下的40Cr钢在3.5%NaCl溶液中浸泡120 h的锈层形貌
图4  在3.5%NaCl溶液中浸泡120 h后未变形40Cr钢表面锈层的XRD
图5  在3.5%NaCl溶液中浸泡120 h后40Cr钢表面锈层的Raman图
图6  不同实验条件下的40Cr钢在3.5%NaCl溶液中浸泡120 h后的EIS图
EnvironmentRs / Ω·cm2Ceff, 1 / μF·cm-2n1R1 / Ω·cm2Ceff, dl / μF·cm-2ndlRct / Ω·cm2
0% strain, dark4.08117.60.60.243260.92784
0% strain, UV9.1728.10.590.524110.85575.7
6% strain, dark2.83876.70.77229.3136200.81366.9
6% strain, UV3.19853.10.8476.1145010.8773
表1  不同实验条件下的40Cr钢在3.5%NaCl溶液中浸泡120 h的EIS拟合结果
图8  不同实验条件下的40Cr钢在3.5%NaCl溶液中浸泡120 h后的M-S图
图9  0%应变和6%应变40Cr钢在循环光照下的光生E-t曲线
图10  塑性应变和光照共同作用下的40Cr钢腐蚀示意图
[1] Zeng D Z, Li H, Tian G, et al. Fatigue behavior of high-strength steel S135 under coupling multi-factor in complex environments [J]. Mater. Sci. Eng., 2018, 724A: 385
[2] Qin P F, Ma H Y, Cui Y, et al. The corrosion behavior of 316 stainless steel under the cooperative effect of plastic stress and UV illumination in 3.5wt%NaCl solution [J]. Corros. Sci., 2023, 223: 111466
doi: 10.1016/j.corsci.2023.111466
[3] Xia L, Wang K, Xu W Q, et al. Synergistic acceleration effects of ultraviolet and salt spray on the degradation and failure of electromagnetic wave-absorbing coatings [J]. Prog. Org. Coat., 2023, 182: 107686
[4] Du D H, Chen K, Lu H, et al. Effects of chloride and oxygen on stress corrosion cracking of cold worked 316/316L austenitic stainless steel in high temperature water [J]. Corros. Sci., 2016, 110: 134
doi: 10.1016/j.corsci.2016.04.035
[5] Lee S, Staehle R W. Adsorption of water on copper, nickel, and iron [J]. Corrosion, 1997, 53: 33
doi: 10.5006/1.3280431
[6] Dante J F, Kelly R G. The evolution of the adsorbed solution layer during atmospheric corrosion and its effects on the corrosion rate of copper [J]. J. Electrochem. Soc., 1993, 140: 1890
doi: 10.1149/1.2220734
[7] Mansfeld F, Kenkel J V. Electrochemical measurements of time-of-wetness and atmospheric corrosion rates [J]. Corrosion, 1977, 33: 13
doi: 10.5006/0010-9312-33.1.13
[8] Cole I S, Ganther W D, Sinclair J D, et al. A study of the wetting of metal surfaces in order to understand the processes controlling atmospheric corrosion [J]. J. Electrochem. Soc., 2004, 151: B627
doi: 10.1149/1.1809596
[9] Wu J X, Wu Y Q, Wang J L. Comparative study on corrosion behavior of Cu and Sn under UV light illumination in chloride-containing borate buffer solution [J]. Corros. Sci., 2021, 186: 109471
doi: 10.1016/j.corsci.2021.109471
[10] Lin H, Frankel G S. Atmospheric corrosion of Cu during constant deposition of NaCl [J]. J. Electrochem. Soc., 2013, 160: C336
doi: 10.1149/2.037308jes
[11] Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
[11] 万 晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851
[12] Schmuki P, Böhni H. Illumination effects on the stability of the passive film on iron [J]. Electrochim. Acta, 1995, 40: 775
doi: 10.1016/0013-4686(94)00341-W
[13] Wilson H, Sunde S, Erbe A. Hole annihilation vs. induced convection: breakdown of different contributions to the photocorrosion mechanism of oxide-covered iron [J]. Corros. Sci., 2021, 185: 109426
doi: 10.1016/j.corsci.2021.109426
[14] Amin M A. Uniform and pitting corrosion events induced by SCN- anions on Al alloys surfaces and the effect of UV light [J]. Electrochim. Acta, 2011, 56: 2518
doi: 10.1016/j.electacta.2010.12.045
[15] Luo H, Li X G, Dong C F, et al. Influence of uv light on passive behavior of the 304 stainless steel in acid solution [J]. J. Phys. Chem. Solids, 2013, 74: 691
doi: 10.1016/j.jpcs.2013.01.005
[16] Breslin C B, Macdonald D D, Sikora E, et al. Photo-inhibition of pitting corrosion on types 304 and 316 stainless steels in chloride-containing solutions [J]. Electrochim. Acta, 1997, 42: 137
doi: 10.1016/0013-4686(96)00178-8
[17] Breslin C B, Macdonald D D, Sikora J, et al. Influence of uv light on the passive behaviour of SS316-effect of prior illumination [J]. Electrochim. Acta, 1997, 42: 127
doi: 10.1016/0013-4686(96)00177-6
[18] Song S H, Chen Z Y. Effect of UV illumination on the NaCl-induced atmospheric corrosion of pure zinc [J]. J. Electrochem. Soc., 2014, 161: C288
doi: 10.1149/2.015406jes
[19] Li H T, Chen Z Y, Liu X C, et al. Study on the mechanism of the photoelectrochemical effect on the initial NaCl-induced atmospheric corrosion process of pure copper exposed in humidified pure air [J]. J. Electrochem. Soc., 2018, 165: C608
doi: 10.1149/2.0771810jes
[20] Song L Y, Ma X M, Chen Z Y, et al. The role of UV illumination on the initial atmospheric corrosion of 09CuPCrNi weathering steel in the presence of NaCl particles [J]. Corros. Sci., 2014, 87: 427
doi: 10.1016/j.corsci.2014.07.013
[21] Song L Y, Chen Z Y, Hou B R. The role of the photovoltaic effect of γ-FeOOH and β-FeOOH on the corrosion of 09CuPCrNi weathering steel under visible light [J]. Corros. Sci., 2015, 93: 191
doi: 10.1016/j.corsci.2015.01.019
[22] Fatimah I, Purwiandono G, Ningrum H S, et al. Physicochemical and photocatalytic activity of needle-like γ-FeOOH/Halloysite [J]. Inorg. Chem. Commun., 2023, 155: 111033
doi: 10.1016/j.inoche.2023.111033
[23] Song L Y, Chen Z Y. Effect of γ-FeOOH and γ-Fe2O3 on the corrosion of Q235 carbon steel under visible light [J]. J. Electrochem. Soc., 2015, 162: C79
doi: 10.1149/2.0301503jes
[24] Wu H Y, Luo Y Z, Zhou G G. The evolution of the corrosion mechanism of structural steel exposed to the urban industrial atmosphere for seven years [J]. Appl. Sci., 2023, 13: 4500
doi: 10.3390/app13074500
[25] Guedes I C, Aoki I V, Carmezim M J, et al. The influence of copper and chromium on the semiconducting behaviour of passive films formed on weathering steels [J]. Thin Solid Films, 2006, 515: 2167
doi: 10.1016/j.tsf.2006.05.011
[26] Zhang T Y, Xu X X, Li Y, et al. The function of Cr on the rust formed on weathering steel performed in a simulated tropical marine atmosphere environment [J]. Constr. Build. Mater, 2021, 277: 122298
doi: 10.1016/j.conbuildmat.2021.122298
[27] Deng S H, Lu H, Li D Y. Influence of UV light irradiation on the corrosion behavior of electrodeposited Ni and Cu nanocrystalline foils [J]. Sci. Rep., 2020, 10: 3049
doi: 10.1038/s41598-020-59420-6
[28] Liu R, Song Y S, Cui Y, et al. Corrosion of high-strength steel in 3.5%NaCl solution under hydrostatic pressure: understanding electrochemical corrosion with tensile stress coupling [J]. Corros. Sci., 2023, 219: 111204
doi: 10.1016/j.corsci.2023.111204
[29] Song Y S, Liu R, Cui Y, et al. Corrosion of high-strength steel in 3.5%NaCl solution under hydrostatic pressure: Initial corrosion with tensile stress coupling [J]. Corros. Sci., 2023, 219: 111229
doi: 10.1016/j.corsci.2023.111229
[30] Gao J X, Cao H, Kuang W J, et al. Research progress on irradiation assisted stress corrosion cracking behavior and mechanism of austenitic steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 835
[30] 高俊宣, 曹 晗, 匡文军 等. 奥氏体钢辐照促进应力腐蚀开裂行为机制的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 835
doi: 10.11902/1005.4537.2023.287
[31] Zhao T L, Wang H B, Luo Q, et al. Rusting behavior of a deformed 450 MPa-grade weathering steel in 5wt.%NaCl salt spray [J]. J. Mater. Res. Technol., 2022, 21: 3181
doi: 10.1016/j.jmrt.2022.10.106
[32] ASTM. Standard practice for making and using U-bend stress-corrosion test specimens [S]. West Conshohocken, PA: ASTM, 2022
[33] Zhang X, Yang S W, Zhang W H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet-dry cycles [J]. Corros. Sci., 2014, 82: 165
doi: 10.1016/j.corsci.2014.01.016
[34] Ma Y T, Li Y, Wang F H. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment [J]. Corros. Sci., 2000, 52: 1796
doi: 10.1016/j.corsci.2010.01.022
[35] Tamura H. The role of rusts in corrosion and corrosion protection of iron and steel [J]. Corros. Sci., 2008, 50: 1872
doi: 10.1016/j.corsci.2008.03.008
[36] Lu X Y, Liu L, Ge J W, et al. Morphology controlled synthesis of Co(OH)2/TiO2 p-n heterojunction photoelectrodes for efficient photocathodic protection of 304 stainless steel [J]. Appl. Surf. Sci., 2021, 537: 148002
doi: 10.1016/j.apsusc.2020.148002
[1] 张伟东, 崔宇, 刘莉, 王福会. 预氧化GH4169合金在中温固态NaClO2 + H2O气氛中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 182-190.
[2] 王文泉, 崔宇, 薛蕴鹏, 刘莉, 王福会. 潮湿空气中应力耦合固态NaCl作用下GH4169合金的中温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1399-1411.
[3] 占阜元, 刘宣义, 黄世福, 刘帅岐, 徐媛媛, 潘喜桂, 何华林, 刘光明. SA210C钢在涂覆不同质量比混合盐膜下的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
[4] 徐佳新, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K452合金表面CVD渗铝涂层制备温度对其750℃硫酸盐热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.
[5] 胡琪, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. Inconel 718及其渗铝涂层在Na2SO4 + 5%NaCl混合盐膜下的热腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[6] 邓志彬, 胡枭, 刘应彦, 岳航, 张千, 汤海平, 鲁锐. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[7] 申聚宝, 崔宇, 刘莉, 刘叡, 孟凡帝, 王福会. DZ40M和K452高温合金在NaCl熔盐中的循环热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 280-288.
[8] 刘姝妤, 耿树江, 马艺萌, 王金龙, 王福会. K444合金表面CVD渗铝涂层在750 ℃空气中耐NaCl腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 321-328.
[9] 杨永, 张庆保, 朱万成, 罗艳龙. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[10] 李蕊, 崔宇, 刘莉, 范磊, 孟凡帝, 王福会. NaCl盐雾环境下Ti60合金的中温腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 595-601.
[11] 曹敏, 刘莉, 余钟芬, 李瑛, 王福会. 2A02铝合金在模拟海洋大气环境中的剥蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 502-510.
[12] 王海媛, 卫英慧, 杜华云, 刘宝胜, 郭春丽, 侯利锋. 绿色缓蚀剂SDDTC对AZ31B镁合金的缓蚀作用及吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[13] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[14] 张明明,辛丽,丁学勇,耿树江,朱圣龙,王福会. 600 ℃/NaCl-H2O-O2协同环境中Ti/TiAlN多层涂层的耐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 29-35.
[15] 朱敏,袁永锋,刘俊,聂轮,周健. Incoloy825合金在不同温度3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 631-636.