|
|
(La0.2Nd0.2Tm0.2Yb0.2Lu0.2)2Zr2O7 高熵陶瓷的制备及其在熔融氧化物膜CaO-MgO-Al2O3-SiO2 下的腐蚀行为 |
耿浩钧1,2, 谢芳坤1,2, 杨凌旭2,3, 王艳丽1, 刘会军2( ), 曾潮流2 |
1 广西大学化学化工学院 南宁 530004 2 松山湖材料实验室 东莞 523808 3 广州航海学院海洋装备工程学院 广州 510725 |
|
Preparation and Corrosion Behavior of (La0.2Nd0.2Tm0.2Yb0.2-Lu0.2)2Zr2O7 High Entropy Ceramic Beneath Deposits of Molten CaO-MgO-Al2O3-SiO2 |
GENG Haojun1,2, XIE Fangkun1,2, YANG Lingxu2,3, WANG Yanli1, LIU Huijun2( ), ZENG Chaoliu2 |
1 College of Chemistry and Chemical Engineer, Guangxi University, Nanning 530004, China 2 Songshan Lake Materials Laboratory, Dongguan 523808, China 3 School of Ocean Engineering, Guangzhou Maritime University, Guangzhou 510725, China |
引用本文:
耿浩钧, 谢芳坤, 杨凌旭, 王艳丽, 刘会军, 曾潮流. (La0.2Nd0.2Tm0.2Yb0.2Lu0.2)2Zr2O7 高熵陶瓷的制备及其在熔融氧化物膜CaO-MgO-Al2O3-SiO2 下的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1244-1252.
Haojun GENG,
Fangkun XIE,
Lingxu YANG,
Yanli WANG,
Huijun LIU,
Chaoliu ZENG.
Preparation and Corrosion Behavior of (La0.2Nd0.2Tm0.2Yb0.2-Lu0.2)2Zr2O7 High Entropy Ceramic Beneath Deposits of Molten CaO-MgO-Al2O3-SiO2[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1244-1252.
[1] |
Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
|
[2] |
Gao D, Liu Y D, Huang A H. Preparation and properties comparison of two novel rare earth modified ceramic ingots used for thermal barrier coatings [J]. Adv. Ceram., 2024, 45: 434
|
[2] |
高 栋, 刘燚栋, 黄爱华. 两种稀土掺杂改性热障涂层陶瓷靶材制备及其性能比较分析研究 [J]. 现代技术陶瓷, 2024, 45: 434
|
[3] |
Lipkin D M, Krogstad J A, Gao Y, et al. Phase evolution upon aging of air-plasma sprayed t′-zirconia coatings: I—Synchrotron X-Ray diffraction [J]. J. Am. Ceram. Soc., 2013, 96: 290
|
[4] |
Wang K, Zou L X, Guo L, et al. High-temperature corrosion and protection of thermal barrier coatings for aeroengines and gas turbines [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1
|
[4] |
王 昆, 邹兰欣, 郭 磊 等. 航空发动机及燃气轮机热障涂层高温腐蚀与防护 [J]. 中国腐蚀与防护学报, 2025, 45: 1
|
[5] |
Boissonnet G, Chalk C, Nicholls J R, et al. Phase stability and thermal insulation of YSZ and erbia-yttria co-doped zirconia EB-PVD thermal barrier coating systems [J]. Surf. Coat. Technol., 2020, 389: 125566
|
[6] |
Zeng Z J, Mao J, Deng Z Q, et al. Study on molten salt corrosion resistance of YSZ thermal barrier coating prepared by PS-PVD [J]. Mater. Res. Appl., 2023, 17: 503
|
[6] |
曾卓见, 毛 杰, 邓子谦 等. PS-PVD制备YSZ热障涂层抗熔盐腐蚀研究 [J]. 材料研究与应用, 2023, 17: 503
|
[7] |
Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides [J]. Nat. Commun., 2015, 6: 8485
doi: 10.1038/ncomms9485
pmid: 26415623
|
[8] |
Ren B, Liu Y F, Meng Z Q, et al. Preparation and electrical properties study of non-equimolar Sr (Ti, Zr, Y, Sn, Hf)O3- σ high-entropy perovskite oxide [J]. Adv. Ceram., 2023, 44: 497
|
[8] |
任 贝, 刘宇峰, 孟子茜 等. 非等摩尔比Sr (Ti, Zr, Y, Sn, Hf)O3- σ 高熵钙钛矿氧化物的制备及电学性能研究 [J]. 现代技术陶瓷, 2023, 44: 497
|
[9] |
Liu L, Dong H Y, Zhang P, et al. Design and experimental investigation of potential low-thermal-conductivity high-entropy rare-earth zirconates [J]. J. Adv. Ceram., 2024, 13: 1132
|
[10] |
Wang X Z, Guo L, Zhang H L, et al. Structural evolution and thermal conductivities of (Gd1- x Yb x )2Zr2O7 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings [J]. Ceram. Int., 2015, 41: 12621
|
[11] |
Zhao Z F, Xiang H M, Dai F Z, et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate [J]. J. Mater. Sci. Technol., 2019, 35: 2647
|
[12] |
Dong H, Liang X H, Wang Y, et al. Research progress on plasma spray-physical vapor deposition protective coatings and their failure mechanisms [J]. Mater. Res. Appl., 2023, 17: 234
|
[12] |
董 浩, 梁兴华, 王 玉 等. 等离子喷涂-物理气相沉积防护涂层及其失效机理研究进展 [J]. 材料研究与应用, 2023, 17: 234
|
[13] |
Tu T Z, Liu J X, Zhou L, et al. Graceful behavior during CMAS corrosion of a high-entropy rare-earth zirconate for thermal barrier coating material [J]. J. Eur. Ceram. Soc., 2022, 42: 649
|
[14] |
Yan R X, Liang W P, Miao Q, et al. Mechanical, thermal and CM-AS resistance properties of high-entropy (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2-Zr2O7 ceramics [J]. Ceram. Int., 2023, 49: 20729
|
[15] |
Tian Y, Zhao X Y, Sun Z P, et al. Improved thermal properties and CMAS corrosion resistance of high-entropy RE zirconates by tuning fluorite-pyrochlore structure [J]. Ceram. Int., 2024, 50: 19182
|
[16] |
Poerschke D L, Levi C G. Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS [J]. J. Eur. Ceram. Soc., 2015, 35: 681
|
[17] |
Deng S X, He G, Yang Z C, et al. Calcium-magnesium-alumina-silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2-Zr2O7 for thermal barrier coatings [J]. J. Mater. Sci. Technol., 2022, 107: 259
|
[18] |
Teng Z, Tan Y Q, Zeng S F, et al. Preparation and phase evolution of high-entropy oxides A2B2O7 with multiple elements at A and B sites [J]. J. Eur. Ceram. Soc., 2021, 41: 3614
|
[19] |
Torres-Rodriguez J, Gutierrez-Cano V, Menelaou M, et al. Rare-earth zirconate Ln2Zr2O7 (Ln: La, Nd, Gd, and Dy) powders, xerogels, and aerogels: preparation, structure, and properties [J]. Inorg. Chem., 2019, 58: 14467
doi: 10.1021/acs.inorgchem.9b01965
pmid: 31613608
|
[20] |
Wang Y H, Jin Y J, Wei T, et al. Size disorder: a descriptor for predicting the single- or dual-phase formation in multi-component rare earth zirconates [J]. J. Alloy. Compd., 2022, 918: 165636
|
[21] |
Yang H B, Lin G Q, Bu H P, et al. Single-phase forming ability of high-entropy ceramics from a size disorder perspective: a case study of (La0.2Eu0.2Gd0.2Y0.2Yb0.2)2Zr2O7 [J]. Ceram. Int., 2022, 48: 6956
|
[22] |
Wang Y L, Lin G Q, Yang L X, et al. Preparation and thermophysical properties of a novel dual-phase and single-phase rare-earth-zirconate high-entropy ceramics [J]. J. Alloy. Compd., 2023, 938: 168551
|
[23] |
Zhu J T, Meng X Y, Zhang P, et al. Dual-phase rare-earth-zirconate high-entropy ceramics with glass-like thermal conductivity [J]. J. Eur. Ceram. Soc., 2021, 41: 2861
|
[24] |
Zhou X, Zou B L, He L M, et al. Hot corrosion behaviour of La2(Zr0.7Ce0.3)2O7 thermal barrier coating ceramics exposed to molten calcium magnesium aluminosilicate at different temperatures [J]. Corros. Sci., 2015, 100: 566
|
[25] |
Chen Z Y, Lin C C, Zheng W, et al. Investigation on improving corrosion resistance of rare earth pyrosilicates by high-entropy design with RE-doping [J]. Corros. Sci., 2022, 199: 110217
|
[26] |
Cong L K, Li W, Guo Y, et al. Calcium magnesium aluminosilicate (CMAS) corrosion behaviors of apatite Ca2La8(SiO4)6O2 thermal barrier coating material [J]. Corros. Sci., 2022, 203: 110322
|
[27] |
Zhang C G, Fan Y, Zhao J L, et al. Corrosion resistance of nonstoichiometric gadolinium zirconate coatings against CaO-MgO-Al2O3-SiO2 silicate [J]. J. Eur. Ceram. Soc., 2021, 41: 3687
|
[28] |
Lin G Q, Wang Y L, Yang L X, et al. CMAS corrosion behavior of a novel high entropy (Nd0.2Gd0.2Y0.2Er0.2Yb0.2)2Zr2O7 thermal barrier coating materials [J]. Corros. Sci., 2023, 224: 111529
|
[29] |
Reddy R R, Nazeer Ahammed Y, Abdul Azeem P, et al. Electronic polarizability and optical basicity properties of oxide glasses through average electronegativity [J]. J. Non-Cryst. Solids, 2001, 286: 169
|
[30] |
Sato S, Takahashi R, Kobune M, et al. Basic properties of rare earth oxides [J]. Appl. Catal., 2009, 356A: 57
|
[31] |
Deng J L, Lu B F, Hu K Y, et al. Interaction between Y-Al-Si-O glass-ceramics for environmental barrier coating materials and Ca-Mg-Al-Si-O melts [J]. Ceram. Inter., 2020, 46: 18262
|
[32] |
Qu W W, Chen Z H, Pei Y L, et al. Spreading and corrosion behavior of CMAS melt on different materials for thermal barrier coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1407
|
[32] |
曲卫卫, 陈泽浩, 裴延玲 等. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 1407
doi: 10.11902/1005.4537.2022.362
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|