Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1244-1252     CSTR: 32134.14.1005.4537.2024.402      DOI: 10.11902/1005.4537.2024.402
  研究报告 本期目录 | 过刊浏览 |
(La0.2Nd0.2Tm0.2Yb0.2Lu0.2)2Zr2O7 高熵陶瓷的制备及其在熔融氧化物膜CaO-MgO-Al2O3-SiO2 下的腐蚀行为
耿浩钧1,2, 谢芳坤1,2, 杨凌旭2,3, 王艳丽1, 刘会军2(), 曾潮流2
1 广西大学化学化工学院 南宁 530004
2 松山湖材料实验室 东莞 523808
3 广州航海学院海洋装备工程学院 广州 510725
Preparation and Corrosion Behavior of (La0.2Nd0.2Tm0.2Yb0.2-Lu0.2)2Zr2O7 High Entropy Ceramic Beneath Deposits of Molten CaO-MgO-Al2O3-SiO2
GENG Haojun1,2, XIE Fangkun1,2, YANG Lingxu2,3, WANG Yanli1, LIU Huijun2(), ZENG Chaoliu2
1 College of Chemistry and Chemical Engineer, Guangxi University, Nanning 530004, China
2 Songshan Lake Materials Laboratory, Dongguan 523808, China
3 School of Ocean Engineering, Guangzhou Maritime University, Guangzhou 510725, China
引用本文:

耿浩钧, 谢芳坤, 杨凌旭, 王艳丽, 刘会军, 曾潮流. (La0.2Nd0.2Tm0.2Yb0.2Lu0.2)2Zr2O7 高熵陶瓷的制备及其在熔融氧化物膜CaO-MgO-Al2O3-SiO2 下的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1244-1252.
Haojun GENG, Fangkun XIE, Lingxu YANG, Yanli WANG, Huijun LIU, Chaoliu ZENG. Preparation and Corrosion Behavior of (La0.2Nd0.2Tm0.2Yb0.2-Lu0.2)2Zr2O7 High Entropy Ceramic Beneath Deposits of Molten CaO-MgO-Al2O3-SiO2[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1244-1252.

全文: PDF(17956 KB)   HTML
摘要: 

采用高温固相法和热压烧结法分别制备了(La 0.2 Nd 0.2 Tm 0.2 Yb 0.2 Lu 0.2 )2Zr2O7高熵陶瓷粉体及块体材料,表征和分析其微观组织结构,并研究了高熵陶瓷在1300 ℃的熔融氧化物膜CaO-MgO-Al2O3-SiO2 (CMAS)下的腐蚀行为。结果表明,高熵陶瓷由70.15%的缺陷萤石和29.85%的烧绿石双相结构组成。在1300 ℃的熔融CMAS中腐蚀一定时间后,其腐蚀产物主要为稀土(RE)元素与Ca共同稳定的(RE, Ca)-ZrO2和磷灰石型(Ca2RE8(SiO4)6O2)产物。腐蚀机制为:高熵陶瓷在熔融CMAS中部分溶解,其中大离子半径的轻稀土元素(La, Nd)易与CMAS中的Ca和Si结合形成磷灰石型Ca2RE8(SiO4)6O2结构,而小离子半径的重稀土元素(Tm, Yb, Lu)则继续留在ZrO2中形成稀土与Ca共同稳定的(RE, Ca)-ZrO2

关键词 稀土锆酸盐高熵陶瓷热障涂层CMAS腐蚀    
Abstract

(La 0.2 Nd 0.2 Tm 0.2 Yb 0.2 Lu 0.2 )2Zr2O7 high-entropy ceramic powders and bulks were prepared by high-temperature solid reaction and hot-pressed sintering method, respectively. The microstructure of the powder and the bulk were characterized, and the corrosion behavior of the high-entropy ceramic was also investigated beneath deposits of molten CaO-MgO-Al2O3-SiO2 (CMAS) at 1300 ℃. The results indicate that the (La 0.2 Nd 0.2 Tm 0.2 Yb 0.2 Lu 0.2 )2Zr2O7 high-entropy ceramic is composed of 70.15% defective fluorite and 29.85% pyrochlore structure. After molten CMAS corrosion at 1300 ℃, the main corrosion products are rare-earth (RE) elements stabilized zirconia and Ca (RE, Ca)-ZrO2and apatite type (Ca2RE8(SiO4)6O2). The corrosion mechanism of the high-entropy ceramic in molten CMAS is as follows: firstly, the high-entropy ceramic partially dissolve in molten CMAS; then the light rare-earth elements with large ionic radii (La, Nd) combine with Ca and Si in molten CMAS to form apatite type Ca2RE8(SiO4)6O2, while the heavy rare-earth elements with small ionic radii (Tm, Yb, Lu) continue to remain in zirconia to form rare earth and Ca stabilized zirconia, namely (RE, Ca)-ZrO2.

Key wordsrare earth zirconate    high-entropy ceramics    thermal barrier coating    CMAS corrosion
收稿日期: 2024-10-20      32134.14.1005.4537.2024.402
ZTFLH:  TG174.4  
基金资助:广东省基础与应用基础研究基金(2022A1515140146);广东省基础与应用基础研究基金(2021A1515010466)
通讯作者: 刘会军,E-mail:hui_jun_liu@163.com,研究方向为金属的腐蚀与防护
Corresponding author: LIU Huijun, E-mail: hui_jun_liu@163.com
作者简介: 耿浩钧,男,2000年生,硕士生
图1  (La0.2Nd0.2Tm0.2Yb0.2Lu0.2)2Zr2O7高熵陶瓷粉体的XRD图谱与单组元RE2Zr2O7 (RE = La、Nd、Tm、Yb、Lu)的XRD标准图谱
图2  1600 ℃热压0.5 h制备的(La0.2Nd0.2Tm0.2Yb0.2Lu0.2)2Zr2O7高熵陶瓷的表面SEM图和对应的EDS元素面扫描图
图3  (La0.2Nd0.2Tm0.2Yb0.2Lu0.2)2Zr2O7高熵陶瓷在1300 ℃熔融CMAS腐蚀1 h后的表面和截面SEM图像
PositionLaNdTmYbLuTotal ReZrCaMgAlSi
Point A0.21.46.67.17.823.173.63.3---
Point B10.910.45.14.74.435.5-24.9--39.6
Point C0.90.70.70.70.73.70.729.18.917.839.8
Point D-1.57.88.08.025.371.82.9---
Point E1.3----1.3-28.49.840.919.6
Point F6.35.53.43.12.921.24.121.54.69.339.3
表1  图3中标记位置的EDS能谱分析结果 (atomic fraction / %)
图4  (La0.2Nd0.2Tm0.2Yb0.2Lu0.2)2Zr2O7高熵陶瓷在1300 ℃熔融CMAS腐蚀5 h后的表面和截面SEM图
PositionLaNdTmYbLuTotal REZrCaMgAlSi
Point A-------37.811.016.934.3
Point B1.81.21.21.41.26.8-19.610.622.041.0
Point C3.73.52.21.91.7133.728.56.916.131.8
表2  图4中标记区域的EDS能谱分析结果
图5  (La0.2Nd0.2Tm0.2Yb0.2Lu0.2)2Zr2O7高熵陶瓷在1300 ℃熔融CMAS腐蚀10 h后的表面和截面SEM图
PositionLaNdTmYbLuTotal REZrCaMgAlSi
Point A-------37.48.323.231.1
Point B9.28.54.74.33.830.56.912.56.910.133.1
表3  图5中标记区域的EDS能谱分析结果
图6  (La0.2Nd0.2Tm0.2Yb0.2Lu0.2)2Zr2O7高熵陶瓷在1300 ℃熔融CMAS腐蚀20 h后的表面和截面SEM图
PositionLaNdTmYbLuTotal REZrCaMgAlSi
Point A02.08.08.88.327.169.83.1000
Point B03.08.78.47.928.067.54.5000
Point C0.60.80001.402.330.266.10
Point D15.814.46.56.05.348.0014.40037.6
Point E02.19.59.89.530.966.52.6000
Point F21.516.05.65.25.453.70120034.3
Point G3.36.89.112.915.948.049.92.1000
表4  图6中标记区域的EDS能谱分析结果
图7  5种稀土元素在磷灰石型结构和ZrO2中的含量
图8  (La0.2Nd0.2Tm0.2Yb0.2Lu0.2)2Zr2O7高熵陶瓷在1300 ℃熔融CMAS中腐蚀不同时间后的表面XRD图谱
[1] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
[2] Gao D, Liu Y D, Huang A H. Preparation and properties comparison of two novel rare earth modified ceramic ingots used for thermal barrier coatings [J]. Adv. Ceram., 2024, 45: 434
[2] 高 栋, 刘燚栋, 黄爱华. 两种稀土掺杂改性热障涂层陶瓷靶材制备及其性能比较分析研究 [J]. 现代技术陶瓷, 2024, 45: 434
[3] Lipkin D M, Krogstad J A, Gao Y, et al. Phase evolution upon aging of air-plasma sprayed t′-zirconia coatings: I—Synchrotron X-Ray diffraction [J]. J. Am. Ceram. Soc., 2013, 96: 290
[4] Wang K, Zou L X, Guo L, et al. High-temperature corrosion and protection of thermal barrier coatings for aeroengines and gas turbines [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1
[4] 王 昆, 邹兰欣, 郭 磊 等. 航空发动机及燃气轮机热障涂层高温腐蚀与防护 [J]. 中国腐蚀与防护学报, 2025, 45: 1
[5] Boissonnet G, Chalk C, Nicholls J R, et al. Phase stability and thermal insulation of YSZ and erbia-yttria co-doped zirconia EB-PVD thermal barrier coating systems [J]. Surf. Coat. Technol., 2020, 389: 125566
[6] Zeng Z J, Mao J, Deng Z Q, et al. Study on molten salt corrosion resistance of YSZ thermal barrier coating prepared by PS-PVD [J]. Mater. Res. Appl., 2023, 17: 503
[6] 曾卓见, 毛 杰, 邓子谦 等. PS-PVD制备YSZ热障涂层抗熔盐腐蚀研究 [J]. 材料研究与应用, 2023, 17: 503
[7] Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides [J]. Nat. Commun., 2015, 6: 8485
doi: 10.1038/ncomms9485 pmid: 26415623
[8] Ren B, Liu Y F, Meng Z Q, et al. Preparation and electrical properties study of non-equimolar Sr (Ti, Zr, Y, Sn, Hf)O3- σ high-entropy perovskite oxide [J]. Adv. Ceram., 2023, 44: 497
[8] 任 贝, 刘宇峰, 孟子茜 等. 非等摩尔比Sr (Ti, Zr, Y, Sn, Hf)O3- σ 高熵钙钛矿氧化物的制备及电学性能研究 [J]. 现代技术陶瓷, 2023, 44: 497
[9] Liu L, Dong H Y, Zhang P, et al. Design and experimental investigation of potential low-thermal-conductivity high-entropy rare-earth zirconates [J]. J. Adv. Ceram., 2024, 13: 1132
[10] Wang X Z, Guo L, Zhang H L, et al. Structural evolution and thermal conductivities of (Gd1- x Yb x )2Zr2O7 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings [J]. Ceram. Int., 2015, 41: 12621
[11] Zhao Z F, Xiang H M, Dai F Z, et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate [J]. J. Mater. Sci. Technol., 2019, 35: 2647
[12] Dong H, Liang X H, Wang Y, et al. Research progress on plasma spray-physical vapor deposition protective coatings and their failure mechanisms [J]. Mater. Res. Appl., 2023, 17: 234
[12] 董 浩, 梁兴华, 王 玉 等. 等离子喷涂-物理气相沉积防护涂层及其失效机理研究进展 [J]. 材料研究与应用, 2023, 17: 234
[13] Tu T Z, Liu J X, Zhou L, et al. Graceful behavior during CMAS corrosion of a high-entropy rare-earth zirconate for thermal barrier coating material [J]. J. Eur. Ceram. Soc., 2022, 42: 649
[14] Yan R X, Liang W P, Miao Q, et al. Mechanical, thermal and CM-AS resistance properties of high-entropy (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2-Zr2O7 ceramics [J]. Ceram. Int., 2023, 49: 20729
[15] Tian Y, Zhao X Y, Sun Z P, et al. Improved thermal properties and CMAS corrosion resistance of high-entropy RE zirconates by tuning fluorite-pyrochlore structure [J]. Ceram. Int., 2024, 50: 19182
[16] Poerschke D L, Levi C G. Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS [J]. J. Eur. Ceram. Soc., 2015, 35: 681
[17] Deng S X, He G, Yang Z C, et al. Calcium-magnesium-alumina-silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2-Zr2O7 for thermal barrier coatings [J]. J. Mater. Sci. Technol., 2022, 107: 259
[18] Teng Z, Tan Y Q, Zeng S F, et al. Preparation and phase evolution of high-entropy oxides A2B2O7 with multiple elements at A and B sites [J]. J. Eur. Ceram. Soc., 2021, 41: 3614
[19] Torres-Rodriguez J, Gutierrez-Cano V, Menelaou M, et al. Rare-earth zirconate Ln2Zr2O7 (Ln: La, Nd, Gd, and Dy) powders, xerogels, and aerogels: preparation, structure, and properties [J]. Inorg. Chem., 2019, 58: 14467
doi: 10.1021/acs.inorgchem.9b01965 pmid: 31613608
[20] Wang Y H, Jin Y J, Wei T, et al. Size disorder: a descriptor for predicting the single- or dual-phase formation in multi-component rare earth zirconates [J]. J. Alloy. Compd., 2022, 918: 165636
[21] Yang H B, Lin G Q, Bu H P, et al. Single-phase forming ability of high-entropy ceramics from a size disorder perspective: a case study of (La0.2Eu0.2Gd0.2Y0.2Yb0.2)2Zr2O7 [J]. Ceram. Int., 2022, 48: 6956
[22] Wang Y L, Lin G Q, Yang L X, et al. Preparation and thermophysical properties of a novel dual-phase and single-phase rare-earth-zirconate high-entropy ceramics [J]. J. Alloy. Compd., 2023, 938: 168551
[23] Zhu J T, Meng X Y, Zhang P, et al. Dual-phase rare-earth-zirconate high-entropy ceramics with glass-like thermal conductivity [J]. J. Eur. Ceram. Soc., 2021, 41: 2861
[24] Zhou X, Zou B L, He L M, et al. Hot corrosion behaviour of La2(Zr0.7Ce0.3)2O7 thermal barrier coating ceramics exposed to molten calcium magnesium aluminosilicate at different temperatures [J]. Corros. Sci., 2015, 100: 566
[25] Chen Z Y, Lin C C, Zheng W, et al. Investigation on improving corrosion resistance of rare earth pyrosilicates by high-entropy design with RE-doping [J]. Corros. Sci., 2022, 199: 110217
[26] Cong L K, Li W, Guo Y, et al. Calcium magnesium aluminosilicate (CMAS) corrosion behaviors of apatite Ca2La8(SiO4)6O2 thermal barrier coating material [J]. Corros. Sci., 2022, 203: 110322
[27] Zhang C G, Fan Y, Zhao J L, et al. Corrosion resistance of nonstoichiometric gadolinium zirconate coatings against CaO-MgO-Al2O3-SiO2 silicate [J]. J. Eur. Ceram. Soc., 2021, 41: 3687
[28] Lin G Q, Wang Y L, Yang L X, et al. CMAS corrosion behavior of a novel high entropy (Nd0.2Gd0.2Y0.2Er0.2Yb0.2)2Zr2O7 thermal barrier coating materials [J]. Corros. Sci., 2023, 224: 111529
[29] Reddy R R, Nazeer Ahammed Y, Abdul Azeem P, et al. Electronic polarizability and optical basicity properties of oxide glasses through average electronegativity [J]. J. Non-Cryst. Solids, 2001, 286: 169
[30] Sato S, Takahashi R, Kobune M, et al. Basic properties of rare earth oxides [J]. Appl. Catal., 2009, 356A: 57
[31] Deng J L, Lu B F, Hu K Y, et al. Interaction between Y-Al-Si-O glass-ceramics for environmental barrier coating materials and Ca-Mg-Al-Si-O melts [J]. Ceram. Inter., 2020, 46: 18262
[32] Qu W W, Chen Z H, Pei Y L, et al. Spreading and corrosion behavior of CMAS melt on different materials for thermal barrier coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1407
[32] 曲卫卫, 陈泽浩, 裴延玲 等. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 1407
doi: 10.11902/1005.4537.2022.362
[1] 李琰琰, 李帅, 董超, 李冬强, 鲍泽斌, 朱圣龙. 大气等离子热障涂层体系在900 ℃含水蒸气和NaCl环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1233-1243.
[2] 王昆, 邹兰欣, 郭磊, 闫凯, 叶福兴, 刘洪丽, 郭洪波. 航空发动机及燃气轮机热障涂层高温腐蚀与防护[J]. 中国腐蚀与防护学报, 2025, 45(1): 1-19.
[3] 张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰. 热障涂层金属粘结层制备与研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[4] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[5] 宇波, 李彰, 周凯旋, 田浩亮, 房永超, 张晓敏, 金国. MoSi2 改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[6] 宋健, 周文晖, 王金龙, 孙文瑶, 陈明辉, 王福会. 不同Y2O3含量的YSZ块体材料在模拟海洋环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 359-364.
[7] 周文晖, 宋健, 陈泽浩, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 水热腐蚀老化对热障涂层的摩擦磨损性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 261-270.
[8] 胡蕴媛, 钱伟, 花银群, 叶云霞, 蔡杰, 戴峰泽. 预腐蚀工艺对Gd2Zr2O7陶瓷抗CMAS腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[9] 余春堂,阳颖飞,鲍泽斌,朱圣龙. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[10] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[11] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[12] 李新慧,马文,尹轶川,马伯乐,白玉,贾瑞灵,董红英. 液相等离子喷涂SrZrO3热障涂层工艺的研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
[13] 蔡丽丽,马文,李新慧,尹轶川,马伯乐,白玉,王俊,董红英. (Gd0.7Sr0.3)ZrO3.35涂层的CaO-MgO-Al2O3-SiO2(CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 47-52.
[14] 张珊榕,董红英,马文,尹轶川,李新慧,白玉,贾瑞灵. 等离子喷涂SrZrO3热障涂层的CaO-MgO-Al2O3-SiO2 (CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 53-57.
[15] 陈琛, 郭洪波, 宫声凯. 横向梯度温度场下热障涂层的失效分析[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.