Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 916-926     CSTR: 32134.14.1005.4537.2024.301      DOI: 10.11902/1005.4537.2024.301
  研究报告 本期目录 | 过刊浏览 |
3.5%NaCl溶液中硝基巴比妥酸对AZ31BAZ91D镁合金腐蚀的缓蚀作用及机理研究
翟亚如1, 熊金平1, 赵景茂1,2()
1 北京化工大学材料科学与工程学院 北京 100029
2 材料电化学过程与技术北京市重点实验室 北京 100029
Corrosion Inhibition Performance of Nitrobarbituric Acid on Mg-alloys AZ31B and AZ91D in 3.5%NaCl Solution
ZHAI Yaru1, XIONG Jinping1, ZHAO Jingmao1,2()
1 College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2 Beijing Key Laboratory of Materials Electrochemical Process and Technology, Beijing 100029, China
引用本文:

翟亚如, 熊金平, 赵景茂. 3.5%NaCl溶液中硝基巴比妥酸对AZ31BAZ91D镁合金腐蚀的缓蚀作用及机理研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 916-926.
Yaru ZHAI, Jinping XIONG, Jingmao ZHAO. Corrosion Inhibition Performance of Nitrobarbituric Acid on Mg-alloys AZ31B and AZ91D in 3.5%NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 916-926.

全文: PDF(18890 KB)   HTML
摘要: 

为了探究一种缓蚀剂对于不同型号的镁合金的缓蚀效果是否存在差异,本文采用静态失重法、析氢和电化学测试、SEM-EDS、XRD和XPS等手段对镁合金表面形成的腐蚀产物形貌、成分和元素组成进行分析,探究硝基巴比妥酸(NBA)对AZ31B和AZ91D镁合金的缓蚀作用机理。结果表明:NBA能明显抑制AZ31B镁合金在3.5% (质量分数) NaCl溶液中的腐蚀速率,而对于AZ91D镁合金则表现为促进腐蚀。NBA为酸性物质,加入3.5%NaCl溶液后,降低了溶液的pH值,初始由于AZ31B镁合金基体的溶解,基体表面产生大量Mg2+,与阴极反应产生的OH-发生反应,在合金表面沉积一层致密的Mg(OH)2保护膜,从而抑制腐蚀;而对于AZ91D镁合金,由于不能在表面快速形成致密的Mg(OH)2保护膜,从而腐蚀加速。

关键词 硝基巴比妥酸AZ31BAZ91D镁合金缓蚀剂缓蚀机理    
Abstract

The inhibition performance of nitrobarbituric acid (NBA) on AZ31B and AZ91D alloys in 3.5%NaCl solution was comparatively evaluated using weight loss method, hydrogen evolution measurement, and electrochemical tests. The results revealed that NBA significantly could inhibit the corrosion of AZ31B in 3.5%NaCl solution, whereas it promoted the corrosionof AZ91D alloy. The inhibition mechanisms of NBA on the two Mg-alloys were elucidated through SEM-EDS, XRD, and XPS analyses. The acidic NBA reduced the pH value of 3.5%NaCl solution, initially dissolving Mg matrix of AZ31B alloy. For AZ31B alloy, the dissolution of the Mg matrix released Mg2+ ions, facilitating the formation of a dense Mg(OH)2 scale on the alloy surface, which effectively inhibited the further corrosion. Conversely, the inherent corrosion resistance of AZ91D hindered the rapid formation of a protective scale Mg(OH)2, allowing NBA to dissolve the substrate, thus promoting the corrosion of AZ91D alloy.

Key wordsnitrobarbituric acid    AZ31B    AZ91D    magnesium alloy    corrosion inhibitors    corrosion inhibition mechanism
收稿日期: 2024-09-17      32134.14.1005.4537.2024.301
ZTFLH:  TG174.42  
基金资助:国家自然科学基金(52371046)
通讯作者: 赵景茂,E-mail:jingmaozhao@126.com,研究方向为材料腐蚀与防护
Corresponding author: ZHAO Jingmao, E-mail: jingmaozhao@126.com
作者简介: 翟亚如,女,2000年生,硕士生
SolutionTemperature / ℃Time / hCorrosion rate / g·m-2·h-1ηw / %
3.5%NaCl25241.029-
481.198-
721.195-
35242.276-
481.907-
722.126-
50243.704-
485.596-
726.473-
3.5%NaCl + 1 g/L NBA25240.60341.4
480.31873.5
720.22281.4
35240.77366.0
480.46175.8
720.29086.4
50240.80578.3
480.57689.7
720.51592.0
表1  AZ31B在3种温度下的含1 g/L NBA的3.5%NaCl溶液中的腐蚀速率和缓蚀率
SolutionTemperature / ℃Time / hCorrosion rate / g·m-2·h-1ηw / %
3.5%NaCl25240.106-
480.062-
720.043-
35240.112-
480.078-
720.048-
50240.135-
480.088-
720.056-
3.5%NaCl + 1 g/L NBA25240.342-222.6
480.191-208.1
720.128-197.7
35240.365-225.9
480.220-182.1
720.158-229.2
50240.497-268.1
480.280-218.2
720.207-269.6
表2  AZ91D在3种温度下的含1 g/L NBA的3.5%NaCl溶液中的腐蚀速率和缓蚀率
Mg-alloySolutionTime / hPH / mm·a-1ηHev / %
AZ31B3.5%NaCl240.1705-
480.1474-
720.1950-
3.5%NaCl + 1 g/L NBA240.16254.7
480.115621.6
720.094551.5
AZ91D3.5%NaCl240.0050-
480.0041-
720.0033-
3.5%NaCl + 1 g/L NBA240.0194-288.0
480.0122-197.6
720.0094-184.8
表3  AZ31B和AZ91D在25 ℃的含有1 g/L NBA的3.5%NaCl溶液中的析氢测试结果
图1  AZ31B与AZ91D镁合金在含/不含1 g/L NBA的盐水溶液中浸泡24 h后的动电位极化曲线
Mg-alloySolutionEcorr / V vs.SCEIcorr / A·cm-2ηi / %
AZ31B3.5%NaCl-1.412.21 × 10-5-
3.5%NaCl + 1 g/L NBA-1.276.02 × 10-672.8
AZ91D3.5%NaCl-1.326.44 × 10-6-
3.5%NaCl + 1 g/L NBA-1.376.96 × 10-5-980.7
表4  两种镁合金极化曲线利用CView软件拟合得到的电化学参数
图2  AZ31B镁合金在含/不含1 g/L NBA的3.5%NaCl溶液中浸泡24 h的Nyquist图、Bode图以及等效电路图
图3  AZ91D镁合金在含/不含1 g/L NBA的3.5%NaCl溶液中浸泡24 h的Nyquist图、Bode图和等效电路图
Corrosion inhibitorRsΩ·cm2QfΩ-1·cm-2·s nnRfΩ·cm2RLΩ·cm2LH·cm2CdlΩ-1·cm-2·s nRctΩ·cm2χ2
Blank55.78---2.172 × 1023.114 × 1022.679 × 10-51.166 × 1021.210 × 10-3
NBA82.902.725 × 10-50.79011.582 × 103--6.743 × 10-62.686 × 1043.129 × 10-3
表5  AZ31B在25 ℃添加和不添加1 g/L NBA的3.5%NaCl溶液中EIS拟合参数
Corrosion inhibitorRsΩ·cm2QfΩ-1·cm-2·s nnRfΩ·cm2RLΩ·cm2LH·cm2CdlΩ-1·cm-2·s nRctΩ·cm2χ2
Blank35.097.653 × 10-60.93101.873 × 1037.935 × 1034.78 × 1055.420 × 10-42.879 × 1032.466 × 10-3
NBA37.093.482 × 10-50.83146.561 × 1022.166 × 10259.383.225 × 10-21.697 × 1022.416 × 10-3
表6  AZ91D在25 ℃添加和不添加1 g/L NBA在3.5%NaCl溶液中EIS拟合参数
图4  AZ31B与AZ91D镁合金分别在含有1 g/L NBA的25、35和50 ℃的盐水溶液中浸泡72 h的表面腐蚀产物的XRD谱
图5  AZ31B镁合金在含有1 g/L NBA的3.5%NaCl溶液中分别浸泡24、48和72 h的SEM图
图6  AZ31B镁合金在含有1 g/L NBA的3.5%NaCl溶液中浸泡72 h的EDS图谱
图7  AZ91D镁合金在含有1 g/L NBA的3.5%NaCl溶液中分别浸泡24、48和72 h的SEM图
图8  AZ31B镁合金在含有1 g/L NBA的3.5%NaCl溶液中浸泡72 h的EDS图谱
图9  AZ31B镁合金在25 ℃的含有1 g/L NBA的3.5% NaCl溶液中浸泡72 h后的截面SEM图像
图10  AZ31B和AZ91D镁合金在50 ℃的含有1 g/L NBA的3.5%NaCl溶液中浸泡72 h后得到的XPS全谱
图11  AZ31B镁合金试样在50 ℃的含有1 g/L NBA的3.5%NaCl溶液中浸泡72 h后得到的XPS高分辨谱
Time / h0369244872
AZ31B357891010
AZ91D3456777
表7  AZ31B和AZ91D在35 ℃下的含有1 g/L NBA的3.5%NaCl溶液中浸泡不同时间时的溶液pH值
[1] Hort N, Huang Y, Fechner D, et al. Magnesium alloys as implant materials-principles of property design for Mg-RE alloys [J]. Acta Biomater., 2010, 6: 1714
doi: 10.1016/j.actbio.2009.09.010 pmid: 19788945
[2] Umoren S A, Solomon M M, Madhankumar A, et al. Exploration of natural polymers for use as green corrosion inhibitors for AZ31 magnesium alloy in saline environment [J]. Carbohydr. Polym., 2020, 230: 115466
[3] Hu J Y. The investigation on inhibitors for magnesium and its alloy in NaCl solution [D]. Wuhan: Huazhong University of Science and Technology, 2012
[3] (扈俊颖. NaCl介质中镁及镁合金缓蚀剂的研究 [D]. 武汉: 华中科技大学, 2012)
[4] Bai Z L, Qin B K. Research progress on the corrosion resistance of magnesium alloy [J]. Sci. Mosaic, 2017, (3): 168
[4] (白志玲, 秦丙克. 镁合金腐蚀性能研究进展 [J]. 科技广场, 2017, (3): 168)
[5] Arslan Kaya A. A review on developments in magnesium alloys [J]. Front. Mater., 2020, 7: 198
[6] Fan B W, Bu Z Y, Ren Y X, et al. Research progress of magnesium and magnesium alloy inhibitors [J]. J. Henan Univ. (Nat. Sci.), 2018, 48: 596
[6] (范保弯, 补朝阳, 任宇轩 等. 镁及镁合金缓蚀剂的研究进展 [J]. 河南大学学报(自然科学版), 2018, 48: 596)
[7] Gao H, Li Q, Chen F N, et al. Study of the corrosion inhibition effect of sodium silicate on AZ91D magnesium alloy [J]. Corros. Sci., 2011, 53: 1401
[8] Chen Y, Wang X D, Lai T, et al. Sodium dodecylbenzene sulfonate film absorbed on magnesium alloy surface: an electrochemical, SKPFM, and molecular dynamics study [J]. J. Mol. Liq., 2022, 357: 119095
[9] Wang X Y, Wang L Y, Ma X H, et al. Review on the preparation and corrosion-resistant application of metal-organic frameworks for magnesium alloy surface [J]. Surf. Technol., 2025, 54(5): 61
[9] (王筱月, 王璐瑶, 马晓慧 等. 镁合金表面金属有机框架材料的制备及防腐应用研究综述 [J]. 表面技术, 2025, 54(5): 61)
[10] Kharitonov D S, Zimowska M, Ryl J, et al. Aqueous molybdate provides effective corrosion inhibition of WE43 magnesium alloy in sodium chloride solutions [J]. Corros. Sci., 2021, 190: 109664
[11] Li L J, Lei J L, Qu W J, et al. Inhibition of molybdate salt on dissolution of magnesium alloys in phosphoric acid [J]. Surf. Technol., 2007, 36(1): 16
[11] (李凌杰, 雷惊雷, 屈卫娟 等. 磷酸介质中钼酸盐对镁合金的缓蚀作用 [J]. 表面技术, 2007, 36(1): 16)
[12] Prince L, Rousseau M A, Noirfalise X, et al. Inhibitive effect of sodium carbonate on corrosion of AZ31 magnesium alloy in NaCl solution [J]. Corros. Sci., 2021, 179: 109131
[13] Li Y, Lu X P, Wu K X, et al. Exploration the inhibition mechanism of sodium dodecyl sulfate on Mg alloy [J]. Corros. Sci., 2020, 168: 108559
[14] Xiao T, Dang N, Hou L F, et al. Inhibiting effect of sodium lignosulphonate on the corrosion of AZ31 magnesium alloy in NaCl solution [J]. Rare. Metal Mater. Eng., 2016, 45: 1600
[14] (肖 涛, 党 宁, 侯利锋 等. 木质素磺酸钠对3.5%NaCl溶液中AZ31镁合金的缓蚀作用 [J]. 稀有金属材料与工程, 2016, 45: 1600)
[15] Yang G H. The study of inhibitors for AZ31 Mg alloy in sodium chloride solution [D]. Taiyuan: Taiyuan University of Technology, 2019
[15] (杨国卉. NaCl溶液中AZ31镁合金缓蚀剂的研究 [D]. 太原: 太原理工大学, 2019)
[16] Zhou N. Study on corrosion inhibitors for AZ31 magnesium in NaCl solution [D]. Taiyuan: Taiyuan University of Technology, 2014
[16] (周 娜. NaCl溶液中AZ31镁合金缓蚀剂的研究 [D]. 太原: 太原理工大学, 2014)
[17] Lamaka S V, Vaghefinazari B, Mei D, et al. Comprehensive screening of Mg corrosion inhibitors [J]. Corros. Sci., 2017, 128: 224
[18] Yadav A K, Ghule V D, Dharavath S. Thermally stable and insensitive energetic cocrystals comprising nitrobarbituric acid coformers [J]. Cryst. Growth. Des., 2023, 23: 2826
[19] Huang H L, Yang W L. Corrosion behavior of AZ91D magnesium alloy in distilled water [J]. Arab. J. Chem., 2020, 13: 6044
[20] Huang J F, Song G L. Research progress on corrosion testing and analysis of Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 519
[20] (黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 519)
doi: 10.11902/1005.4537.2023.185
[21] Cui Y N, Zhang T, Wang F H. New understanding on the mechanism of organic inhibitors for magnesium alloy [J]. Corros. Sci., 2022, 198: 110118
[22] Huang Z F, Yong Q W, Fang R, et al. Superhydrophobic and corrosion-resistant nickel-based composite coating on magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 755
[22] (黄志凤, 雍奇文, 房 蕊 等. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层 [J]. 中国腐蚀与防护学报, 2023, 43: 755)
doi: 10.11902/1005.4537.2023.143
[23] Si W T, Zhang J H, Gao R J. Preparation of superamphiphobic surface on AZ31B magnesium alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 381
[23] (司伟婷, 张吉昊, 高荣杰. AZ31B镁合金超双疏表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 381)
doi: 10.11902/1005.4537.2023.097
[24] Gao X, Ma D Y, Huang Q S, et al. Pyrazole ionic liquid corrosion inhibitor for magnesium alloy: synthesis, performances and theoretical explore [J]. J. Mol. Liq., 2022, 353: 118769
[25] Wang L, Shinohara T, Zhang B P. XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution [J]. Appl. Surf. Sci., 2010, 256: 5807
[1] 张超, 陈俊航, 邹士文, 张欢, 李曌亮, 肖葵. Mg-Gd-Y-Zr合金在模拟沿海贮存环境下的腐蚀行为与机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 731-738.
[2] 侯晓犇, 刘宁, 扈俊颖. 天然气集输倾斜管道腐蚀行为及缓蚀剂分布研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 780-786.
[3] 魏然, 蒋全通, 孙琛, 王伟伟, 段继周, 侯保荣. 镁合金在海洋环境中的腐蚀与防护研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 533-547.
[4] 魏珂正, 蒋文龙, 龚奕维, 裘欣, 丁汉林, 项重辰, 王子健. 时效时间对锻态AZ80镁合金第二相析出及柱面取向表面腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[5] 吴浩天, 张天遂, 李广芳, 刘宏芳. 中性水系锌离子电池负极缓蚀剂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1089-1099.
[6] 尹洁, 高永浩, 易芳. Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[7] 程学雨, 叶桓, 郭程皓, 卢立新, 李伟哲. 苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1323-1331.
[8] 田梦真, 王勇, 李涛, 汪川, 郭泉忠, 郭建喜. 电参数对AZ31B镁合金微弧氧化膜能耗及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[9] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[10] 朱慧文, 郑黎, 张昊, 于宝义, 崔志博. BeWE43镁合金高温氧化行为及阻燃性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[11] 黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
[12] 欧阳嘉露, 王茜茜, 韩霞, 王子明. 油水交替环境中咪唑啉对CO2 腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 707-715.
[13] 龙武剑, 唐杰, 罗启灵, 丘章鸿, 王海龙. 生物质碳点对Q235钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[14] 司伟婷, 张吉昊, 高荣杰. AZ31B镁合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
[15] 柳泽邦, 冉博元, 裴恒, 罗凯林, 赵智斌, 韩鹏, 强玉杰. 金属铝用复配缓蚀剂协同缓蚀作用研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 312-322.