Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 643-652     CSTR: 32134.14.1005.4537.2024.169      DOI: 10.11902/1005.4537.2024.169
  研究报告 本期目录 | 过刊浏览 |
煤矸石改性环氧涂层的制备及其防腐性能研究
陈丽1,2, 冯佳3, 孟凡帝1(), 王福会1
1.东北大学 腐蚀与防护中心 沈阳 110819
2.宁夏理工学院 高性能金属材料及防护技术联合实验室 石嘴山 745260
3.中国石油天然气股份有限公司长庆油田分公司第九采油厂 银川 750000
Preparation and Anticorrosion Performance of a Coal-gangue Modified Epoxy Coating
CHEN Li1,2, FENG Jia3, MENG Fandi1(), WANG Fuhui1
1.Corrosion and Protection Center, Northeastern University, Shenyang 110819, China
2.High Performance Metal Materials and Protection Laboratory, Ningxia Institute of Science and Technology, Shizuishan 745260, China
3.China National Petroleum Corporation Changqing Oilfield Branch Ninth Oil Extraction Plant, Yinchuan 750000, China
引用本文:

陈丽, 冯佳, 孟凡帝, 王福会. 煤矸石改性环氧涂层的制备及其防腐性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 643-652.
Li CHEN, Jia FENG, Fandi MENG, Fuhui WANG. Preparation and Anticorrosion Performance of a Coal-gangue Modified Epoxy Coating[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 643-652.

全文: PDF(11502 KB)   HTML
摘要: 

为探索煤炭产业固废物煤矸石的高效利用途径,本文以环氧树脂E44为成膜物质、以经过刻蚀处理的煤矸石为填料制备煤矸石改性环氧树脂涂料,再将涂料涂刷于硅胶板和Q235钢工作面上分别制得自由膜样品和涂层金属样品。采用SEM对煤矸石的形貌和尺寸进行验证测试;采用吸水率测试、拉伸试验测试,附着力测试和电化学阻抗谱测试等方法对涂层性能进行研究。结果表明,煤矸石在环氧树脂中适量添加可以提高涂层的致密性、强度、韧性、附着力和防腐性能,但性能改善与煤矸石添加量之间呈非线性变化;当环氧树脂中煤矸石的添加量为5%时性能相对较好,断裂强度达35.30 MPa,最大应变达6.13%,在浸泡10 d后附着力损失率为58.65%,但仍保持相对高的低频阻抗模值3.40 × 108 Ω·cm2和涂层电阻6.36 × 107 Ω·cm2

关键词 煤矸石多层片状结构屏蔽效应防腐性能    
Abstract

Epoxy resin is a popular choice as the matrix of organic coatings in the metal protection sector. However, the single shielding effect of epoxy coatings is limited. One effective method to improve their protective properties is to add inorganic fillers to epoxy coatings. Coal gangue with a large number of micropores and a high specific surface area, is a rich source of alumina, silica, iron oxide, calcium oxide, magnesium oxide and other components. There are few relevant reports on the application of coal gangue in the field of anticorrosion at home and abroad. Therefore, expanding the application of coal gangue in the field of anticorrosion coating may be of significance in environmental benefits, technical application and innovation. Herein, the impact of coal gangue addition on the performance of epoxy coatings was studied with epoxy resin E44 as matrix and different proportions (1%, 5%, and 10% in mass fraction) of coal gangue as fillers to prepare coal gangue-modified epoxy resin coatings. These coatings were subsequently applied to silica gel plates and Q235 mild steel surfaces, yielding samples of free coating film and coated steel. The average coating thickness was approximately 150 μm. The morphology of coal gangue powders was revealed by means of JSM-7001F field emission scanning electron microscope as that the coal gangue presented multi lamellar structure with an average particle size of 3.18 ± 0.12 μm, which may be conductive to the improvement of the coating properties. Then, a series of tests were conducted to assess the performance of the coating, including a water absorption test, tensile test, adhesion test and electrochemical EIS test. The results showed that the addition of coal gangue to the epoxy resin in proper quantity can enhance the densification, strength, toughness, adhesion and anticorrosive properties of the coatings. However, the performance improvement showed non-linear dependence on the dosage of coal gangue; an excess addition of coal gangue can result in particle agglomeration, which may lead to an increase in defects, and reduction in the protective properties of the coating. For the coating with the addition of coal gangue 5%, the fracture strength reaches 35.30 MPa, the maximum strain reaches 6.13%, and the lower saturated water absorption rate of 2.24% can be obtained after immersing for 10 d. This is accompanied by a loss of adhesion of 58.65%, maintaining the maximum low-frequency impedance modulus value of 3.40 × 108 Ω·cm2 and the maximum coating resistance of 6.36 × 107 Ω·cm2. The multi lamellar structured coal gangue with large specific surface area and anisotropic multi-orientations of grains, which may be beneficial to the enhancement of the densification, further the mechanical properties, the adhesion, and the anticorrosive properties of the coating as well. The coal gangue serves as a filler, and its additive mass fraction of 5% represents the better performance of the coating. The utilization of gangue in anticorrosive coating represents a novel avenue for the effective deployment of coal gangue and the diversification of filler types in anticorrosive coating. The composition and distinctive microstructure of coal gangue permit the optimization of coating performance through the implementation of appropriate modifications.

Key wordscoal gangue    multilayer lamellar structure    shielding effect    anticorrosive property
收稿日期: 2024-05-29      32134.14.1005.4537.2024.169
ZTFLH:  TG174  
基金资助:国家自然科学基金(52271052);宁夏高校科研项目(NGY2022145);宁夏自然科学基金(2023AAC03363)
通讯作者: 孟凡帝,E-mail:fandimeng@mail.neu.edu.cn,研究方向为海洋环境材料的腐蚀与防护
Corresponding author: MENG Fandi, E-mail: fandimeng@mail.neu.edu.cn
作者简介: 陈 丽,女,1988年生,博士生
SampleE44 / gGangue / gSolvent / gCuring agent / g
1%CE5.000.053.004.00
5%CE0.25
10%CE0.50
表1  涂料样品成分表
图1  煤矸石刻蚀前后红外谱图
图2  煤矸石刻蚀前后形貌
图3  煤矸石尺寸统计图
图4  不同涂层吸水动力学曲线
图5  不同涂层应力应变曲线
图6  不同涂层浸泡前和浸泡10 d后的附着力强度
图7  不同涂层的电化学阻抗谱图
图8  常压浸泡环境下不同涂层的Rc和CPEdl随浸泡时间的变化
图9  去除不同涂层后的金属表面形貌
图10  去除不同涂层后金属表面的EDS面分析结果
图11  煤矸石改性环氧涂层防护机理示意图
[1] Hou B R. Corrosion costs and economic development [J]. Chin. Sci. Technol. Ind., 2020, (2): 21
[1] 侯保荣. 腐蚀成本与经济发展 [J]. 中国科技产业, 2020, (2): 21
[2] Lyon S B, Bingham R, Mills D J. Advances in corrosion protection by organic coatings: what we know and what we would like to know [J]. Prog. Org. Coat., 2017, 102: 2
[3] Olajire A A. Recent advances on organic coating system technologies for corrosion protection of offshore metallic structures [J]. J. Mol. Liq, 2018, 269: 572
[4] Huang J B, Yang M, Zhu W H, et al. Zinc-rich polyester powder coatings with iron Phosphide: lower zinc content and higher corrosion resistance [J]. J. Ind. Eng. Chem., 2024, 133: 577
[5] Liu D, Wu F, Zhao W J, et al. Advance in anticorrosion performance of epoxy resin [J]. Mater. China, 2015, 34: 852
[5] 刘 丹, 伍 方, 赵文杰 等. 环氧树脂防腐性能研究进展 [J]. 中国材料进展, 2015, 34: 852
[6] Salehinasab H, Majidi R, Danaee I, et al. Engineering a zinc-rich ethyl silicate coating based on nickel oxide nanoparticles for improving anticorrosion performance [J]. Hybrid Adv., 2024, 5: 100132
[7] Li Z Y, Ravenni G, Bi H C, et al. Effects of biochar nanoparticles on anticorrosive performance of zinc-rich epoxy coatings [J]. Prog. Org. Coat., 2021, 158: 106351
[8] George J S, Vijayan P P, Paduvilan J K, et al. Advances and future outlook in epoxy/graphene composites for anticorrosive applications [J]. Prog. Org. Coat., 2022, 162: 106571
[9] Mourya P, Goswami R N, Saini R, et al. Epoxy coating reinforced with graphene-PANI nanocomposites for enhancement of corrosion-resistance performance of mild steel in saline water [J]. Colloids Surf., 2024, 687A: 133500
[10] Hao Y S, Liu F C, Han E H. Mechanical and barrier properties of epoxy/ultra-short glass fibers composite coatings [J]. J. Mater. Sci. Technol., 2012, 28: 1077
[11] Meng F D, Gao H D, Liu L, et al. Preparation and anticorrosive performance of a basalt organic coating for deep sea coupled pressure-fluid environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 704
[11] 孟凡帝, 高浩东, 刘 莉 等. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 704
doi: 10.11902/1005.4537.2023.142
[12] Liu L S, Zhao M Y, Pei X Y, et al. Improving corrosion resistance of epoxy coating by optimizing the stress distribution and dispersion of SiO2 filler [J]. Prog. Org. Coat., 2023, 179: 107522
[13] Ratnam D, Bhaumik S K. Functionalized borosilicate-silica-epoxy nanocomposite superhydrophobic coating for corrosion inhibition under harsh environment [J]. Prog. Org. Coat., 2024, 188: 108264
[14] Cheng X, An Y K, He Y M, et al. Effect of Nano-Al2O3/h-BN composite modification on the electrothermal properties of epoxy resin composites [J]. Polym. Mater. Sci. Eng., 2023, 39(7): 131
[14] 程 显, 安永科, 贺永明 等. 纳米Al2O3/h-BN复配改性对环氧树脂复合材料电热性能的影响 [J]. 高分子材料科学与工程, 2023, 39(7): 131
[15] Yao H R, Bi W Y, Jiang Y, et al. Research progress on protective properties of epoxy coatings reinforced by nanometer oxides [J]. Fine Chem., 2021, 38: 662
[15] 姚红蕊, 毕文雅, 姜 岩 等. 纳米氧化物颗粒增强环氧涂层防护性能的研究进展 [J]. 精细化工, 2021, 38: 662
[16] Randis R, Darmadi D B, Gapsari F, et al. The potential of nanocomposite-based coatings for corrosion protection of metals: a review [J]. J. Mol. Liq., 2023, 390: 123067
[17] Chen R Q, Zhang H R, Ma X L, et al. Two-dimensional reduced graphene oxide/polypyrrloe-based coating enable superior corrosion protection and photothermal-induced in-situ internal environmental regulation [J]. Chem. Eng. J., 2023, 458: 141481
[18] Shen P H, Wen J, Dong B Q, et al. Anticorrosion mechanism of ethylene-chlorotrifluoroeethylene coatings reinforced with hydroxylated carbon nanotubes: An experimental and molecular dynamics simulation study [J]. Prog. Org. Coat., 2024, 186: 107991
[19] Wan S, Chen H K, Cai G Y, et al. Functionalization of h-BN by the exfoliation and modification of carbon dots for enhancing corrosion resistance of waterborne epoxy coating [J]. Prog. Org. Coat., 2022, 165: 106757
[20] Rangel-Olivares F R, Arce-Estrada E M, Cabrera-Sierra R. Development of polyaniline/chitosan (PANI/CTS) and TiO2-PANI/CTS nanocomposites as anti-corrosion coatings: Synthesis and characterization [J]. Surf. Coat. Technol, 2024, 476: 130163
[21] Kong W Q, Serdechnova M, Kasneryk V, et al. ZIF-8 based bifunctional coatings with anticorrosive and antibacterial properties: a new design strategy for more efficiency [J]. Surf. Coat. Technol., 2024, 483: 130812
[22] Ji X H, Ji W H, Pourhashem S, et al. Novel superhydrophobic core-shell fibers/epoxy coatings with self-healing anti-corrosion properties in both acidic and alkaline environments [J]. React. Funct. Polym., 2023, 187: 105574
[23] Zhang S H, Shen Y, Lu J L, et al. Tannic acid-modified g-C3N4 nanosheets/polydimethylsiloxane as a photothermal-responsive self-healing composite coating for smart corrosion protection [J]. Chem. Eng. J., 2024, 483: 149232
[24] Yang C F, Smyrl W H, Cussler E L. Flake alignment in composite coatings [J]. J. Membr. Sci., 2004, 231(1-2): 1
[25] Duan D Y, Wang C Q, Bai D S, et al. Representative coal gangue in China: physical and chemical properties, heavy metal coupling mechanism and risk assessment [J]. Sustain. Chem. Pharm., 2024, 37: 101402
[26] Shen L L, Lai W A, Zhang J X, et al. Mechanical properties and micro characterization of coal slime water-based cementitious material-gangue filling: a novel method for co-treatment of mining waste [J]. Constr. Build. Mater., 2023, 408: 133747
[27] Qiu J S, Cheng K, Zhang R Y, et al. Study on the influence mechanism of activated coal gangue powder on the properties of filling body [J]. Constr. Build. Mater., 2022, 345: 128071
[28] Zheng Q W, Zhou Y, Liu X, et al. Environmental hazards and comprehensive utilization of solid waste coal gangue [J]. Prog. Nat. Sci. Mater. Int., 2024, 34: 223
[29] Li J R, Cao Y S, Sha A M, et al. Prospective application of coal gangue as filler in fracture-healing behavior of asphalt mixture [J]. J. Clean Prod., 2022, 373: 133738
[30] Chen Y F, Meng F D, Qu Y Y, et al. One-step synthesis of superhydrophobic polyaniline capsules and its effect on corrosion resistance of organic coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 345
[30] 陈异凡, 孟凡帝, 曲优异 等. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 345
doi: 10.11902/1005.4537.2022.089
[31] Cao J Y, Li J, Yin W C, et al. Histamine-modified epoxy resin and its effect on properties of organic coatings [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 151
[31] 曹京宜, 李 敬, 殷文昌 等. 组胺改性环氧树脂及其对有机涂层性能的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 151
[32] Shao Y W, Gu S F, Zhang T, et al. Effect of size of mica filler on diffusion of water in epoxy coatings [J]. Paint Coat. Ind., 2007, 37(10): 11
[32] 邵亚薇, 顾胜飞, 张 涛 等. 云母填料尺寸效应对水在环氧涂层中扩散行为的影响 [J]. 涂料工业, 2007, 37(10): 11
[33] Meng F D, Zhang T, Liu L, et al. Failure behaviour of an epoxy coating with polyaniline modified graphene oxide under marine alternating hydrostatic pressure [J]. Surf. Coat. Technol., 2019, 361: 188
[34] Liu T, Liu Y, Ye Y W, et al. Corrosion protective properties of epoxy coating containing tetraaniline modified nano-α-Fe2O3 [J]. Prog. Org. Coat., 2019, 132: 455
[35] Li B W, Njuko D, Meng M J, et al. Designing smart microcapsules with natural polyelectrolytes to improve self-healing performance for water-based polyurethane coatings [J]. ACS Appl. Mater. Inter., 2022, 14: 53370
[36] Aghili M, Yazdi M K, Ranjbar Z, et al. Anticorrosion performance of electro-deposited epoxy/amine functionalized graphene oxide nanocomposite coatings [J]. Corros. Sci., 2021, 179: 109143
[1] 孟凡帝, 高浩东, 刘莉, 崔宇, 刘叡, 王福会. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[2] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[3] 栾浩, 孟凡帝, 刘莉, 崔宇, 刘叡, 郑宏鹏, 王福会. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[4] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[5] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[6] 蔡光义,王浩伟,赵苇杭,董泽华. 添加纳米CeO2对聚氨酯涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[7] 田惠文 李伟华 宗成中 侯保荣. 纳米SiO2改性环氧涂层的防腐性能[J]. 中国腐蚀与防护学报, 2009, 29(5): 365-370.