|
|
煤矸石改性环氧涂层的制备及其防腐性能研究 |
陈丽1,2, 冯佳3, 孟凡帝1( ), 王福会1 |
1.东北大学 腐蚀与防护中心 沈阳 110819 2.宁夏理工学院 高性能金属材料及防护技术联合实验室 石嘴山 745260 3.中国石油天然气股份有限公司长庆油田分公司第九采油厂 银川 750000 |
|
Preparation and Anticorrosion Performance of a Coal-gangue Modified Epoxy Coating |
CHEN Li1,2, FENG Jia3, MENG Fandi1( ), WANG Fuhui1 |
1.Corrosion and Protection Center, Northeastern University, Shenyang 110819, China 2.High Performance Metal Materials and Protection Laboratory, Ningxia Institute of Science and Technology, Shizuishan 745260, China 3.China National Petroleum Corporation Changqing Oilfield Branch Ninth Oil Extraction Plant, Yinchuan 750000, China |
引用本文:
陈丽, 冯佳, 孟凡帝, 王福会. 煤矸石改性环氧涂层的制备及其防腐性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 643-652.
Li CHEN,
Jia FENG,
Fandi MENG,
Fuhui WANG.
Preparation and Anticorrosion Performance of a Coal-gangue Modified Epoxy Coating[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 643-652.
[1] |
Hou B R. Corrosion costs and economic development [J]. Chin. Sci. Technol. Ind., 2020, (2): 21
|
[1] |
侯保荣. 腐蚀成本与经济发展 [J]. 中国科技产业, 2020, (2): 21
|
[2] |
Lyon S B, Bingham R, Mills D J. Advances in corrosion protection by organic coatings: what we know and what we would like to know [J]. Prog. Org. Coat., 2017, 102: 2
|
[3] |
Olajire A A. Recent advances on organic coating system technologies for corrosion protection of offshore metallic structures [J]. J. Mol. Liq, 2018, 269: 572
|
[4] |
Huang J B, Yang M, Zhu W H, et al. Zinc-rich polyester powder coatings with iron Phosphide: lower zinc content and higher corrosion resistance [J]. J. Ind. Eng. Chem., 2024, 133: 577
|
[5] |
Liu D, Wu F, Zhao W J, et al. Advance in anticorrosion performance of epoxy resin [J]. Mater. China, 2015, 34: 852
|
[5] |
刘 丹, 伍 方, 赵文杰 等. 环氧树脂防腐性能研究进展 [J]. 中国材料进展, 2015, 34: 852
|
[6] |
Salehinasab H, Majidi R, Danaee I, et al. Engineering a zinc-rich ethyl silicate coating based on nickel oxide nanoparticles for improving anticorrosion performance [J]. Hybrid Adv., 2024, 5: 100132
|
[7] |
Li Z Y, Ravenni G, Bi H C, et al. Effects of biochar nanoparticles on anticorrosive performance of zinc-rich epoxy coatings [J]. Prog. Org. Coat., 2021, 158: 106351
|
[8] |
George J S, Vijayan P P, Paduvilan J K, et al. Advances and future outlook in epoxy/graphene composites for anticorrosive applications [J]. Prog. Org. Coat., 2022, 162: 106571
|
[9] |
Mourya P, Goswami R N, Saini R, et al. Epoxy coating reinforced with graphene-PANI nanocomposites for enhancement of corrosion-resistance performance of mild steel in saline water [J]. Colloids Surf., 2024, 687A: 133500
|
[10] |
Hao Y S, Liu F C, Han E H. Mechanical and barrier properties of epoxy/ultra-short glass fibers composite coatings [J]. J. Mater. Sci. Technol., 2012, 28: 1077
|
[11] |
Meng F D, Gao H D, Liu L, et al. Preparation and anticorrosive performance of a basalt organic coating for deep sea coupled pressure-fluid environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 704
|
[11] |
孟凡帝, 高浩东, 刘 莉 等. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 704
doi: 10.11902/1005.4537.2023.142
|
[12] |
Liu L S, Zhao M Y, Pei X Y, et al. Improving corrosion resistance of epoxy coating by optimizing the stress distribution and dispersion of SiO2 filler [J]. Prog. Org. Coat., 2023, 179: 107522
|
[13] |
Ratnam D, Bhaumik S K. Functionalized borosilicate-silica-epoxy nanocomposite superhydrophobic coating for corrosion inhibition under harsh environment [J]. Prog. Org. Coat., 2024, 188: 108264
|
[14] |
Cheng X, An Y K, He Y M, et al. Effect of Nano-Al2O3/h-BN composite modification on the electrothermal properties of epoxy resin composites [J]. Polym. Mater. Sci. Eng., 2023, 39(7): 131
|
[14] |
程 显, 安永科, 贺永明 等. 纳米Al2O3/h-BN复配改性对环氧树脂复合材料电热性能的影响 [J]. 高分子材料科学与工程, 2023, 39(7): 131
|
[15] |
Yao H R, Bi W Y, Jiang Y, et al. Research progress on protective properties of epoxy coatings reinforced by nanometer oxides [J]. Fine Chem., 2021, 38: 662
|
[15] |
姚红蕊, 毕文雅, 姜 岩 等. 纳米氧化物颗粒增强环氧涂层防护性能的研究进展 [J]. 精细化工, 2021, 38: 662
|
[16] |
Randis R, Darmadi D B, Gapsari F, et al. The potential of nanocomposite-based coatings for corrosion protection of metals: a review [J]. J. Mol. Liq., 2023, 390: 123067
|
[17] |
Chen R Q, Zhang H R, Ma X L, et al. Two-dimensional reduced graphene oxide/polypyrrloe-based coating enable superior corrosion protection and photothermal-induced in-situ internal environmental regulation [J]. Chem. Eng. J., 2023, 458: 141481
|
[18] |
Shen P H, Wen J, Dong B Q, et al. Anticorrosion mechanism of ethylene-chlorotrifluoroeethylene coatings reinforced with hydroxylated carbon nanotubes: An experimental and molecular dynamics simulation study [J]. Prog. Org. Coat., 2024, 186: 107991
|
[19] |
Wan S, Chen H K, Cai G Y, et al. Functionalization of h-BN by the exfoliation and modification of carbon dots for enhancing corrosion resistance of waterborne epoxy coating [J]. Prog. Org. Coat., 2022, 165: 106757
|
[20] |
Rangel-Olivares F R, Arce-Estrada E M, Cabrera-Sierra R. Development of polyaniline/chitosan (PANI/CTS) and TiO2-PANI/CTS nanocomposites as anti-corrosion coatings: Synthesis and characterization [J]. Surf. Coat. Technol, 2024, 476: 130163
|
[21] |
Kong W Q, Serdechnova M, Kasneryk V, et al. ZIF-8 based bifunctional coatings with anticorrosive and antibacterial properties: a new design strategy for more efficiency [J]. Surf. Coat. Technol., 2024, 483: 130812
|
[22] |
Ji X H, Ji W H, Pourhashem S, et al. Novel superhydrophobic core-shell fibers/epoxy coatings with self-healing anti-corrosion properties in both acidic and alkaline environments [J]. React. Funct. Polym., 2023, 187: 105574
|
[23] |
Zhang S H, Shen Y, Lu J L, et al. Tannic acid-modified g-C3N4 nanosheets/polydimethylsiloxane as a photothermal-responsive self-healing composite coating for smart corrosion protection [J]. Chem. Eng. J., 2024, 483: 149232
|
[24] |
Yang C F, Smyrl W H, Cussler E L. Flake alignment in composite coatings [J]. J. Membr. Sci., 2004, 231(1-2): 1
|
[25] |
Duan D Y, Wang C Q, Bai D S, et al. Representative coal gangue in China: physical and chemical properties, heavy metal coupling mechanism and risk assessment [J]. Sustain. Chem. Pharm., 2024, 37: 101402
|
[26] |
Shen L L, Lai W A, Zhang J X, et al. Mechanical properties and micro characterization of coal slime water-based cementitious material-gangue filling: a novel method for co-treatment of mining waste [J]. Constr. Build. Mater., 2023, 408: 133747
|
[27] |
Qiu J S, Cheng K, Zhang R Y, et al. Study on the influence mechanism of activated coal gangue powder on the properties of filling body [J]. Constr. Build. Mater., 2022, 345: 128071
|
[28] |
Zheng Q W, Zhou Y, Liu X, et al. Environmental hazards and comprehensive utilization of solid waste coal gangue [J]. Prog. Nat. Sci. Mater. Int., 2024, 34: 223
|
[29] |
Li J R, Cao Y S, Sha A M, et al. Prospective application of coal gangue as filler in fracture-healing behavior of asphalt mixture [J]. J. Clean Prod., 2022, 373: 133738
|
[30] |
Chen Y F, Meng F D, Qu Y Y, et al. One-step synthesis of superhydrophobic polyaniline capsules and its effect on corrosion resistance of organic coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 345
|
[30] |
陈异凡, 孟凡帝, 曲优异 等. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 345
doi: 10.11902/1005.4537.2022.089
|
[31] |
Cao J Y, Li J, Yin W C, et al. Histamine-modified epoxy resin and its effect on properties of organic coatings [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 151
|
[31] |
曹京宜, 李 敬, 殷文昌 等. 组胺改性环氧树脂及其对有机涂层性能的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 151
|
[32] |
Shao Y W, Gu S F, Zhang T, et al. Effect of size of mica filler on diffusion of water in epoxy coatings [J]. Paint Coat. Ind., 2007, 37(10): 11
|
[32] |
邵亚薇, 顾胜飞, 张 涛 等. 云母填料尺寸效应对水在环氧涂层中扩散行为的影响 [J]. 涂料工业, 2007, 37(10): 11
|
[33] |
Meng F D, Zhang T, Liu L, et al. Failure behaviour of an epoxy coating with polyaniline modified graphene oxide under marine alternating hydrostatic pressure [J]. Surf. Coat. Technol., 2019, 361: 188
|
[34] |
Liu T, Liu Y, Ye Y W, et al. Corrosion protective properties of epoxy coating containing tetraaniline modified nano-α-Fe2O3 [J]. Prog. Org. Coat., 2019, 132: 455
|
[35] |
Li B W, Njuko D, Meng M J, et al. Designing smart microcapsules with natural polyelectrolytes to improve self-healing performance for water-based polyurethane coatings [J]. ACS Appl. Mater. Inter., 2022, 14: 53370
|
[36] |
Aghili M, Yazdi M K, Ranjbar Z, et al. Anticorrosion performance of electro-deposited epoxy/amine functionalized graphene oxide nanocomposite coatings [J]. Corros. Sci., 2021, 179: 109143
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|