Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 620-630     CSTR: 32134.14.1005.4537.2024.202      DOI: 10.11902/1005.4537.2024.202
  研究报告 本期目录 | 过刊浏览 |
船舶EH40钢在低温和常温海水中的腐蚀机理研究
刘家兵, 黄诗雨, 郭娜(), 郭章伟, 刘涛
上海海事大学 海洋科学与工程学院 上海深远海洋装备材料工程技术研究中心 上海 201306
Corrosion Behavior of EH40 Marine Steel in Artificial Seawater at Low- and Ambient-Temperatures
LIU Jiabing, HUANG Shiyu, GUO Na(), GUO Zhangwei, LIU Tao
Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
引用本文:

刘家兵, 黄诗雨, 郭娜, 郭章伟, 刘涛. 船舶EH40钢在低温和常温海水中的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 620-630.
Jiabing LIU, Shiyu HUANG, Na GUO, Zhangwei GUO, Tao LIU. Corrosion Behavior of EH40 Marine Steel in Artificial Seawater at Low- and Ambient-Temperatures[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 620-630.

全文: PDF(24065 KB)   HTML
摘要: 

为研究船舶EH40钢在低温与常温海水中的腐蚀机理,将试样浸泡于0和25 ℃模拟海水环境中,阐明不同浸泡周期下的腐蚀速率和电化学行为规律,利用配备能谱仪的扫描电镜观察腐蚀产物表面/截面形貌和成分分布特征,采用X射线衍射和光电子能谱技术分析腐蚀产物物相组成。结果表明:浸泡试验(过程)第1~3 d,试样在0 ℃海水中的腐蚀速率更高而点蚀数量更少,这归因于低温海水中高的溶解氧浓度和试样表面腐蚀产物的均匀覆盖;随着浸泡周期延长,25 ℃海水中钢样的腐蚀速率高于0 ℃海水,这是由于EH40钢在常温海水中具有更高的电化学活性和耐蚀性更差的腐蚀产物层;钢样在两种温度海水环境中产生的含Fe腐蚀产物主要为FeOOH,Fe2O3和Fe3O4,但25 ℃海水中的钢样在浸泡后期会产生碳酸钙镁盐沉淀,与含Fe腐蚀产物共同构成腐蚀产物膜,降低了锈层的腐蚀保护性。

关键词 EH40钢低温海水常温海水腐蚀机理    
Abstract

The corrosion behavior of EH40 marine steel was assessed by means of immersion tests in an artificial seawater at 0 and 25 ℃ for various period respectively Then the variation of corrosion rate, morphology and composition of corrosion products were characterized via electrochemical measurement, scanning electron microscope equipped with an energy dispersive spectrometer, X-ray diffractometer and X-ray photoelectron spectroscopy etc. The results indicated that during the first three days of immersion, the corrosion rate of the steel at 0 ℃ was much higher with the formation fewer pits, which may be attributed to the high dissolved oxygen concentration and the uniform coverage of corrosion products on the steel surface in the low-temperature seawater. As the immersion period extended, the corrosion rate of the steel at 25 ℃ was higher than that at 0 ℃, which may be due to the higher electrochemical activity and less protectiveness of the formed product layer on EH40 steel at 25 ℃. The main iron-containing corrosion products formed at the two temperatures were FeOOH, Fe2O3 and Fe3O4. However, in the later stages of immersion in the artificial seawater at 25 ℃, precipitates of calcium and magnesium carbonate could form, which mixed with the iron-containing corrosion products to create a corrosion product film, further deteriorating the protectiveness of the rust layer.

Key wordsEH40 steel    low-temperature seawater    ambient-temperature seawater    corrosionmechanism
收稿日期: 2024-07-07      32134.14.1005.4537.2024.202
ZTFLH:  TG172  
基金资助:中国博士后科学基金(2023M742213);国家资助博士后研究人员计划C档(GZC20231538);上海市科学技术委员会自然科学基金(24ZR1427800)
通讯作者: 郭 娜,E-mail:naguo@shmtu.edu.cn,研究方向为海洋工程材料
Corresponding author: GUO Na, E-mail: naguo@shmtu.edu.cn
作者简介: 刘家兵,女,2000年生,硕士生
图1  模拟海水在0和25 ℃下pH和DO随时间变化
图2  EH 40钢样在0 ℃和25 ℃海水中浸泡不同时间宏观形貌及腐蚀速率和腐蚀量柱状图
图3  EH40钢样在0和25 ℃海水中浸泡不同时间后去除表面腐蚀产物后的光学照片
图4  EH40钢在模拟海水中浸泡不同周期后的阻抗谱图与等效电路模型
Time / dRs / Ω·cm2CPEf / S·cm-2·s-n1nfRf / Ω·cm2CPEdl / S·cm-2·s-n2ndlRct / Ω·cm2χ2 / 10-4
0 ℃09.813.7 × 10-40.82---178925
39.284.6 × 10-40.77252.31.0 × 10-30.6221862.6
1411.001.5 × 10-30.7152.561.2 × 10-30.6610940.6
25 ℃09.583.6 × 10-40.79---17297.0
39.503.1 × 10-40.84150.56.2 × 10-40.6416910.3
1413.632.5 × 10-30.8610475.4 × 10-40.8911315.1
表1  等效电路中所用元件的拟合值
图5  EH40钢样在0和25 ℃海水中浸泡不同时间后表面腐蚀产物膜SEM图像和EDS元素分析
Time / dFeCaMgCOCl
0 ℃172.450.050.396.9616.700.06
369.180.210.294.4423.390.16
764.550.180.425.2126.711.00
1447.060.854.8110.6633.920.53
25 ℃180.060.110.687.628.570.05
365.450.270.925.6124.700.95
763.820.820.0612.8517.044.58
1440.1221.520.168.4328.091.40
表2  EH40钢样在0和25 ℃海水中浸泡不同时间后表面腐蚀产物膜 EDS元素质量分数
图6  EH40钢样在0和25 ℃海水中浸泡14 d后腐蚀产物膜截面SEM图像和EDS元素分析
Time / dFeCaMgCOCl
0 ℃174.660.620.460.4410.350.44
283.400.520.210.246.330.24
25 ℃326.2340.750.168.90`23.110.69
41.8059.510.167.7730.000.37
表3  EH40钢样在0和25 ℃海水中浸泡14 d后腐蚀产物膜截面EDS元素质量分数
图7  EH40钢样在海水中浸泡不同时间后表面腐蚀产物的XPS图谱
图8  EH40钢样在海水中浸泡不同时间后表面腐蚀产物的XRD谱
[1] He W J, Zhang X K, Feng X Y. A study of the impact of the arctic channel on trade between Shandong province and Northwestern Europe and North America [J]. Northern Econ. Trade, 2023, (11): 17
[1] 何伟静, 张晓可, 封肖云. 北极航道对山东省与西北欧和北美贸易的影响 [J]. 北方经贸, 2023, (11): 17
[2] Zhang Y, Yang W. The trade potentialities between China and the arctic countries under the background of the opening of the arctic waterway: an empirical test based on extended gravity model [J]. Ocean Dev. Manag., 2021, 38(12): 18
[2] 张 颖, 杨 卫. 北极航道开通背景下中国与北极国家的贸易潜力分析——基于扩展引力模型的实证检验 [J]. 海洋开发与管理, 2021, 38(12): 18
[3] Xie X G, Du X J. The arctic shipping security governance: multi-level governance, governance dilemma and path choice [J]. J. Ocean Univ. China (Soc. Sci. Ed.), 2022, (3): 68
[3] 谢晓光, 杜晓杰. 北极航运安全治理: 多层治理、治理困境与路径选择 [J]. 中国海洋大学学报(社会科学版), 2022, (3): 68
[4] Li Z F, Deng Z. Prospect of the arctic route and its impact upon the global economy and geopolitical structure [J]. J. Eurasian Econ., 2021, (2): 90
[4] 李振福, 邓 昭. 北极航线应用前景及对世界经济和地缘政治的影响 [J]. 欧亚经济, 2021, (2): 90
[5] Cai M J, Cao W. Navigation practice and safety research of arctic northeast passage [J]. J. Transp. Inform. Saf., 2020, 38(3): 77
[5] 蔡梅江, 曹 伟. 北极东北航道航行实践与安全性研究 [J]. 交通信息与安全, 2020, 38(3): 77
[6] Zhou L, Riska K, Ji C Y. Simulating transverse icebreaking process considering both crushing and bending failures [J]. Mar. Struct., 2017, 54: 167
[7] Wang K, Wu L, Li Y Z, et al. Experimental study on low temperature fatigue performance of polar icebreaking ship steel [J]. Ocean Eng., 2020, 216: 107789
[8] Cao H B, Hou G L, Xu T C, et al. Effect of seawater temperature on the corrosion and cavitation erosion-corrosion resistance of Al10Cr28Co28Ni34 high-entropy alloy coating [J]. Corros. Sci., 2024, 228: 111822
[9] Chen X, Zhou G Z, Wang X T, et al. Progress in semiconductor materials for photocathodic protection: design strategies and applications in marine corrosion protection [J]. Chemosphere, 2023, 323: 138194
[10] Wang R G. Influence of ultrasound on pitting corrosion and crevice corrosion of SUS304 stainless steel in chloride sodium aqueous solution [J]. Corros. Sci., 2008, 50: 325
[11] Ma Y, Zhang Y M, Zhang R Y, et al. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view [J]. Appl. Microbiol. Biotechnol., 2020, 104: 515
doi: 10.1007/s00253-019-10184-8 pmid: 31807887
[12] Ding K K, Zhang P H, Liu S T, et al. Study on the classification of seawater corrosivity of typical sea areas in China [J]. Corros. Rev., 2020, 38: 323
[13] Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions [J]. Corros. Sci., 2007, 49: 1394
[14] Hu J Z, Hu X, Deng P C, et al. Research progress of seawater galvanic coupling corrosion of steels [J]. Corros. Prot., 2024, 45(1): 51
[14] 胡杰珍, 胡 欣, 邓培昌 等. 钢铁海水电偶腐蚀的研究进展 [J]. 腐蚀与防护, 2024, 45(1): 51
[15] Hu J Z, Wang P L, Deng P C, et al. Research progress on anti-corrosion technology of steel in seawater immersion zone [J]. Iron Steel, 2023, 58(12): 1
[15] 胡杰珍, 王沛林, 邓培昌 等. 海水全浸区钢铁的防腐蚀技术研究进展 [J]. 钢铁, 2023, 58(12): 1
doi: 10.13228/j.boyuan.issn0449-749x.20230426
[16] Zhang Z Q, Chen Z B, Dong Q J, et al. Galvanic corrosion behavior of low alloy steel, stainless steel and Al-Mg alloy in simulated deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 417
[16] 张泽群, 陈质彬, 董其娟 等. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 417
doi: 10.11902/1005.4537.2021.166
[17] Shen Y Y, Dong Y H, Li H D, et al. The influence of low temperature on the corrosion of EH40 steel in a NaCl solution [J]. Int. J. Electrochem. Sci., 2018, 13: 6310
[18] Yang Y, Chen X Y, Liu Y, et al. Study on hysteretic performance of welded T-joints circular tube on platform considering seawater corrosion [J]. Ocean Eng., 2022, 259: 111942
[19] Mao X M, Liu T, Guo N, et al. Corrosion behavior of marine low alloy steel under the condition of multi-factor coupling in simulated arctic route [J]. Surf. Technol., 2022, 51(6): 36
[19] 毛晓敏, 刘 涛, 郭 娜 等. 模拟北极航线多因素耦合条件下船用低合金钢的腐蚀行为 [J]. 表面技术, 2022, 51(6): 36
[20] Al-Anezi K, Somerfield C, Mee D, et al. Parameters affecting the solubility of carbon dioxide in seawater at the conditions encountered in MSF desalination plants [J]. Desalination, 2008, 222: 548
[21] Wang Y, Wu J J, Sun L P, et al. Corrosion of EH40 steel affected by Halomonas titanicae dependent on electron acceptors utilized [J]. Corros. Sci., 2021, 182: 109263
[22] AlAbbas F M, Bhola S M, Spear J R, et al. The shielding effect of wild type iron reducing bacterial flora on the corrosion of linepipe steel [J]. Eng. Fail. Anal., 2013, 33: 222
[23] Chongdar S, Gunasekaran G, Kumar P. Corrosion inhibition of mild steel by aerobic biofilm [J]. Electrochim. Acta, 2005, 50: 4655
[24] Dang L, Luo X. Research status of metal corrosion assessment and prediction in marine environments [J]. Equip. Environ. Eng., 2024, 21(3): 88
[24] 党 乐, 罗 茜. 海洋环境下金属腐蚀评估与预测研究现状 [J]. 装备环境工程, 2024, 21(3): 88
[25] Melchers R E, Jeffrey R. Early corrosion of mild steel in seawater[J]. Corrosi. Sci, 2005, 47(7): 1678
[1] 宋晓稳, 白苗苗, 陈娜娜, 高逸晖, 冯亚丽, 刘倩倩, 张尧尧, 卢琳, 吴俊升, 肖葵. 海南滨海大气环境中棘孢曲霉对铝合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 631-642.
[2] 王宇晗, 李俊, 刘恒维, 许楠, 刘杰, 陈旭. 海洋环境中金属材料微生物腐蚀研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
[3] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[4] 巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[5] 孙佳钰, 彭文山, 邢少华. 应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 755-764.
[6] 韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[7] 赵璐, 李谦, 赵天亮. 青铜器腐蚀行为与封护技术[J]. 中国腐蚀与防护学报, 2023, 43(6): 1165-1177.
[8] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[9] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[10] 刘明明, 杨小兵, 陈晓琪, 王政彬, 郑玉贵, 贺春林. 醋酸环境下金属材料腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 13-21.
[11] 刘毅超, 钟显康, 扈俊颖. 湿气环境中抗硫钢的元素硫腐蚀特征及腐蚀机理[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[12] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[13] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[14] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[15] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.