|
|
船舶EH40钢在低温和常温海水中的腐蚀机理研究 |
刘家兵, 黄诗雨, 郭娜( ), 郭章伟, 刘涛 |
上海海事大学 海洋科学与工程学院 上海深远海洋装备材料工程技术研究中心 上海 201306 |
|
Corrosion Behavior of EH40 Marine Steel in Artificial Seawater at Low- and Ambient-Temperatures |
LIU Jiabing, HUANG Shiyu, GUO Na( ), GUO Zhangwei, LIU Tao |
Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China |
引用本文:
刘家兵, 黄诗雨, 郭娜, 郭章伟, 刘涛. 船舶EH40钢在低温和常温海水中的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 620-630.
Jiabing LIU,
Shiyu HUANG,
Na GUO,
Zhangwei GUO,
Tao LIU.
Corrosion Behavior of EH40 Marine Steel in Artificial Seawater at Low- and Ambient-Temperatures[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 620-630.
[1] |
He W J, Zhang X K, Feng X Y. A study of the impact of the arctic channel on trade between Shandong province and Northwestern Europe and North America [J]. Northern Econ. Trade, 2023, (11): 17
|
[1] |
何伟静, 张晓可, 封肖云. 北极航道对山东省与西北欧和北美贸易的影响 [J]. 北方经贸, 2023, (11): 17
|
[2] |
Zhang Y, Yang W. The trade potentialities between China and the arctic countries under the background of the opening of the arctic waterway: an empirical test based on extended gravity model [J]. Ocean Dev. Manag., 2021, 38(12): 18
|
[2] |
张 颖, 杨 卫. 北极航道开通背景下中国与北极国家的贸易潜力分析——基于扩展引力模型的实证检验 [J]. 海洋开发与管理, 2021, 38(12): 18
|
[3] |
Xie X G, Du X J. The arctic shipping security governance: multi-level governance, governance dilemma and path choice [J]. J. Ocean Univ. China (Soc. Sci. Ed.), 2022, (3): 68
|
[3] |
谢晓光, 杜晓杰. 北极航运安全治理: 多层治理、治理困境与路径选择 [J]. 中国海洋大学学报(社会科学版), 2022, (3): 68
|
[4] |
Li Z F, Deng Z. Prospect of the arctic route and its impact upon the global economy and geopolitical structure [J]. J. Eurasian Econ., 2021, (2): 90
|
[4] |
李振福, 邓 昭. 北极航线应用前景及对世界经济和地缘政治的影响 [J]. 欧亚经济, 2021, (2): 90
|
[5] |
Cai M J, Cao W. Navigation practice and safety research of arctic northeast passage [J]. J. Transp. Inform. Saf., 2020, 38(3): 77
|
[5] |
蔡梅江, 曹 伟. 北极东北航道航行实践与安全性研究 [J]. 交通信息与安全, 2020, 38(3): 77
|
[6] |
Zhou L, Riska K, Ji C Y. Simulating transverse icebreaking process considering both crushing and bending failures [J]. Mar. Struct., 2017, 54: 167
|
[7] |
Wang K, Wu L, Li Y Z, et al. Experimental study on low temperature fatigue performance of polar icebreaking ship steel [J]. Ocean Eng., 2020, 216: 107789
|
[8] |
Cao H B, Hou G L, Xu T C, et al. Effect of seawater temperature on the corrosion and cavitation erosion-corrosion resistance of Al10Cr28Co28Ni34 high-entropy alloy coating [J]. Corros. Sci., 2024, 228: 111822
|
[9] |
Chen X, Zhou G Z, Wang X T, et al. Progress in semiconductor materials for photocathodic protection: design strategies and applications in marine corrosion protection [J]. Chemosphere, 2023, 323: 138194
|
[10] |
Wang R G. Influence of ultrasound on pitting corrosion and crevice corrosion of SUS304 stainless steel in chloride sodium aqueous solution [J]. Corros. Sci., 2008, 50: 325
|
[11] |
Ma Y, Zhang Y M, Zhang R Y, et al. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view [J]. Appl. Microbiol. Biotechnol., 2020, 104: 515
doi: 10.1007/s00253-019-10184-8
pmid: 31807887
|
[12] |
Ding K K, Zhang P H, Liu S T, et al. Study on the classification of seawater corrosivity of typical sea areas in China [J]. Corros. Rev., 2020, 38: 323
|
[13] |
Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions [J]. Corros. Sci., 2007, 49: 1394
|
[14] |
Hu J Z, Hu X, Deng P C, et al. Research progress of seawater galvanic coupling corrosion of steels [J]. Corros. Prot., 2024, 45(1): 51
|
[14] |
胡杰珍, 胡 欣, 邓培昌 等. 钢铁海水电偶腐蚀的研究进展 [J]. 腐蚀与防护, 2024, 45(1): 51
|
[15] |
Hu J Z, Wang P L, Deng P C, et al. Research progress on anti-corrosion technology of steel in seawater immersion zone [J]. Iron Steel, 2023, 58(12): 1
|
[15] |
胡杰珍, 王沛林, 邓培昌 等. 海水全浸区钢铁的防腐蚀技术研究进展 [J]. 钢铁, 2023, 58(12): 1
doi: 10.13228/j.boyuan.issn0449-749x.20230426
|
[16] |
Zhang Z Q, Chen Z B, Dong Q J, et al. Galvanic corrosion behavior of low alloy steel, stainless steel and Al-Mg alloy in simulated deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 417
|
[16] |
张泽群, 陈质彬, 董其娟 等. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 417
doi: 10.11902/1005.4537.2021.166
|
[17] |
Shen Y Y, Dong Y H, Li H D, et al. The influence of low temperature on the corrosion of EH40 steel in a NaCl solution [J]. Int. J. Electrochem. Sci., 2018, 13: 6310
|
[18] |
Yang Y, Chen X Y, Liu Y, et al. Study on hysteretic performance of welded T-joints circular tube on platform considering seawater corrosion [J]. Ocean Eng., 2022, 259: 111942
|
[19] |
Mao X M, Liu T, Guo N, et al. Corrosion behavior of marine low alloy steel under the condition of multi-factor coupling in simulated arctic route [J]. Surf. Technol., 2022, 51(6): 36
|
[19] |
毛晓敏, 刘 涛, 郭 娜 等. 模拟北极航线多因素耦合条件下船用低合金钢的腐蚀行为 [J]. 表面技术, 2022, 51(6): 36
|
[20] |
Al-Anezi K, Somerfield C, Mee D, et al. Parameters affecting the solubility of carbon dioxide in seawater at the conditions encountered in MSF desalination plants [J]. Desalination, 2008, 222: 548
|
[21] |
Wang Y, Wu J J, Sun L P, et al. Corrosion of EH40 steel affected by Halomonas titanicae dependent on electron acceptors utilized [J]. Corros. Sci., 2021, 182: 109263
|
[22] |
AlAbbas F M, Bhola S M, Spear J R, et al. The shielding effect of wild type iron reducing bacterial flora on the corrosion of linepipe steel [J]. Eng. Fail. Anal., 2013, 33: 222
|
[23] |
Chongdar S, Gunasekaran G, Kumar P. Corrosion inhibition of mild steel by aerobic biofilm [J]. Electrochim. Acta, 2005, 50: 4655
|
[24] |
Dang L, Luo X. Research status of metal corrosion assessment and prediction in marine environments [J]. Equip. Environ. Eng., 2024, 21(3): 88
|
[24] |
党 乐, 罗 茜. 海洋环境下金属腐蚀评估与预测研究现状 [J]. 装备环境工程, 2024, 21(3): 88
|
[25] |
Melchers R E, Jeffrey R. Early corrosion of mild steel in seawater[J]. Corrosi. Sci, 2005, 47(7): 1678
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|