Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 327-337     CSTR: 32134.14.1005.4537.2024.276      DOI: 10.11902/1005.4537.2024.276
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
掺氢天然气输送管材氢脆与腐蚀复合防护技术研究进展
崔博伦1, 赵杰1,2(), 吕冉1, 李敬法2, 宇波2, 闫东雷3
1.北京石油化工学院安全工程学院 北京 102627
2.北京石油化工学院氢能研究中心 北京 102627
3.北京京辉绿氢新能源科技有限公司 北京 102400
Research Progress in Composite Protection Technology Against Hydrogen-embrittlement and -corrosion for Hydrogen-blended Natural Gas Pipeline
CUI Bolun1, ZHAO Jie1,2(), LV Ran1, LI Jingfa2, YU Bo2, YAN Donglei3
1.School of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing 102627, China
2.Hydrogen Energy Research Center, Beijing Institute of Petrochemical Technology, Beijing 102627, China
3.Beijing Jinghui Green Hydrogen New Energy Technology Co., Ltd., Beijing 102400, China
引用本文:

崔博伦, 赵杰, 吕冉, 李敬法, 宇波, 闫东雷. 掺氢天然气输送管材氢脆与腐蚀复合防护技术研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
Bolun CUI, Jie ZHAO, Ran LV, Jingfa LI, Bo YU, Donglei YAN. Research Progress in Composite Protection Technology Against Hydrogen-embrittlement and -corrosion for Hydrogen-blended Natural Gas Pipeline[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 327-337.

全文: PDF(15694 KB)   HTML
摘要: 

氢能作为一种高效且清洁的能源,将氢气掺入天然气长输管道中,不仅可以提高绿色氢能在能源领域的利用率,还能加速我国向新能源转型的步伐。氢气的掺入改变了常规天然气管道的失效规律,提高了天然气管道的氢脆与腐蚀的双重风险。本文通过文献研究,系统总结了针对管道氢脆与腐蚀的复合防护技术,主要涵盖含Ni类涂层技术、含Mo类涂层技术、氧化石墨烯类涂层技术以及金属和金属氧化物有机复合涂层,分析了各项技术的特点及其发展现状。相比于无机涂层,有机复合涂层的种类更加丰富,适用范围更广,且有机复合涂层阻氢和防腐蚀的双重防护性能更加优异。现阶段对涂层的氢脆敏感性测试实验多以电化学液相氢渗透实验为主,与掺氢天然气的高压气态氢工况存在一定差异,未来气液相氢渗透共存并耦合腐蚀的实验将成为研究热点。本文可为掺氢天然气管道的阻氢和防腐复合涂层防护技术研究提供参考。

关键词 掺氢天然气氢脆腐蚀复合防护技术涂层    
Abstract

Hydrogen energy, known as an efficient and clean energy source, has significant potential when it is blended with natural gas and transported by the existing pipeline for long distance. This integration not only boosts the utilization of green hydrogen in the energy sector, but also accelerates the country's transition to new energy sources. However, the participation of hydrogen alters the conventional failure patterns of natural gas pipelines, increasing the risks of hydrogen-embrittlement and -corrosion. This paper systematically reviews the latest advancements in composite protection technologies designed to mitigate hydrogen-embrittlement and -corrosion of pipelines. The composite protection technologies for hydrogen-embrittlement and -corrosion of pipelines were summarized, including those related with Ni-containing coatings, Mo-containing coatings, graphene oxide coatings, and metal or metal oxide-organic composite coatings etc., so as the characteristics and development status of every tech. Compared to inorganic coatings, organic composite coatings offer greater versatility, broader applicability, and enhanced dual protection against both hydrogen-permeation and -corrosion. Currently, the electrochemical liquid-phase hydrogen permeation is adopted as the main testing method for hydrogen embrittlement sensitivity of coatings, however which can not faithfully reproduce the high-pressure gaseous hydrogen environments of hydrogen-blended natural gas pipelines. In the future a new hydrogen embrittlement sensitivity test method for coatings may be expected, which should be conducted under conditions of hydrogen permeation induced by combine the coexistence of gas- and liquid-phase hydrogen charging while companied with corrosion. Finally, this review may provide valuable insights for the development of hydrogen permeation-resistant and anti-corrosion composite coating technologies for hydrogen-blended natural gas pipelines.

Key wordshydrogen-blended natural gas    hydrogen embrittlement    corrosion    composite protection technology    coating
收稿日期: 2024-08-30      32134.14.1005.4537.2024.276
ZTFLH:  TE832  
基金资助:国家市场监督管理总局科技技术项目(2023MK123);国家自然科学基金(52372311)
通讯作者: 赵杰,E-mail:zhaojie@bipt.edu.cn,研究方向为过程装备安全评价技术
Corresponding author: ZHAO Jie, E-mail: zhaojie@bipt.edu.cn
作者简介: 崔博伦,男,2002年生,硕士生
图1  未涂覆、电镀Ni和非晶态Ni-P涂层钢的H渗透曲线和动电位极化曲线[11]
图2  腐蚀后Ni-P-SiO2@Ni和Ni-P-SiO2涂层的微观形貌[14]
图3  Ni-P镀层和Ni-P-Ti3C2T x /MoS2复合镀层的腐蚀示意图[16]
图4  材料截面SEM图[21]
图5  H吸附Fe(111)和MoS2/Fe(111)薄膜的界面电荷转移对比图(黄色和蓝色分别代表电子积累和耗尽)[23]
图6  EP、5%-EP、15%-EP的氢渗透曲线图[29]
图7  涂层在3.5%NaCl溶液浸泡120 h后的Nyquist图[29]
图8  不同涂层的SEM形貌[36]
图9  氢渗透示意图[36]
图10  APTES-GO纳米片层改变腐蚀物质的渗透路径[5]
图11  不同填料含量涂层的横截面图[45]
图12  PET基材、EP涂层PET和复合涂层涂层涂层PET的H2气体透过率(GTR),不同填料含量的EP和复合涂层的H2渗透系数值,气体渗透机示意图PET、EP涂层PET和复合涂层覆盖PET的H2气体分子渗透过程和还原机理示意图[45]
1 Li C X, Song G, Liu J Y, et al. The development research of hydrogen energy industry based on enterprise perspective [J]. Energy China, 2022, 44(11): 36
1 李晨曦, 宋 固, 刘佳音 等. 基于企业视角的我国氢能产业发展研究 [J]. 中国能源, 2022, 44(11): 36
2 Wu R, Cao Q, Xiao S, et al. Technology pathway for natural gas pipeline network integration of renewable fuel gas in China [J]. Mod. Chem. Eng., 2024, 44(8): 12
2 吴 荣, 曹 权, 肖 思 等. 中国天然气管网融合可再生燃气技术路径研究 [J]. 现代化工, 2024, 44(8): 12
3 Wen S F, Xie X D, Zhang Y. Formation of corrosion in natural gas pipelines and anti corrosion protection measures [J]. China Plant Eng., 2024, (10): 178
3 温少飞, 谢晓东, 张 杨. 天然气管道腐蚀的形成与防腐保护措施 [J]. 中国设备工程, 2024, (10): 178
4 Li F J, Zheng Z Y, Wang X Y, et al. Horizontally aligned BN nanosheet array for nanometer-thick ZrO2 coating with greatly enhanced anticorrosion and hydrogen isotope resistance property [J]. Chem. Eng. J., 2022, 440: 135920
5 Huang K Z. Preparation and hydrogen inhibition mechanism of APTES-GO modified epoxy resin/PVDF organic coating [D]. Beijing: General Research Institute for Nonferrous Metals, 2023
5 黄科智. APTES-GO改性环氧树脂/PVDF有机涂层的制备及其阻氢机理研究 [D]. 北京: 北京有色金属研究总院, 2023
6 Yuan S C, Li K, Sun Y, et al. Designing functionalized graphene-stitched-SiC/fluoropolymer novel composite coating with excellent corrosion resistance and hydrogen diffusion barrier properties [J]. Chem. Eng. J., 2023, 472: 144881
7 Zheng Z Y, Li H P, Li F J, et al. An efficient PDA/Al2O3 nanosheets reinforced ultra-thin ZrO2 coating with attractive anti-corrosion and deuterium resistance property [J]. Chem. Eng. J., 2022, 450: 138307
8 Li H P, Zheng Z Y, Liu S Q, et al. Thermochemically synthesized α-Al2O3 composite coating with high bonding strength and deuterium permeation resistance [J]. J. Am. Ceram. Soc., 2024, 107: 1871
9 Li F J. Preparation and properties of ZrO2 composite tritium permeation barrier coatings [D]. Wuhan: Huazhong University of Science and Technology, 2023
9 李芳健. ZrO2复合阻氚涂层的制备及性能研究 [D]. 武汉: 华中科技大学, 2023
10 Wang Z G, Chen W D, Yan S F, et al. Characterization of ZrO2 ceramic coatings on ZrH1.8 prepared in different electrolytes by micro-arc oxidation [J]. Rare Metals, 2022, 41: 1043
11 Samanta S, Singh C, Banerjee A, et al. Development of amorphous Ni-P coating over API X70 steel for hydrogen barrier application [J]. Surf. Coat. Technol., 2020, 403: 126356
12 Huang X M, Xiang X. Effect of SiO2 particle on properties of electroless Ni-P-SiO2 composite coatings [J]. Electroplat. Pollut. Control, 2020, 40(3): 35
12 黄晓梅, 向 旭. SiO2微粒对化学镀Ni-P-SiO2复合镀层性能的影响 [J]. 电镀与环保, 2020, 40(3): 35
13 Zhu Z F. Preparation of Ni-P-SiO2 nano composite coating by sol-gel method and its properties [D]. Yangzhou: Yangzhou University, 2019
13 朱智峰. 溶胶-凝胶法制备Ni-P-SiO2纳米复合镀层及其性能研究 [D]. 扬州: 扬州大学, 2019
14 Zhao Z H, Wang S, Cheng M, et al. Novel Nano-core-shell structure SiO2@Ni-reinforced Ni-P-based amorphous composite coating [J]. JOM, 2024, 76: 2166
15 Samanta S, Mondal K, Dutta M, et al. Electroless NiP coatings over API X70 steel: Effect of composition on the H-permeation and corrosion resistance [J]. Surf. Coat. Technol., 2021, 409: 126928
16 Du Y C. Preparation and property research of Ni-P composite coatings doped and modified by micro-nanometer particles [D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering, Chinese Academy of Sciences), 2021
16 杜英超. 微纳米颗粒掺杂改性Ni-P复合镀层的制备及性能研究 [D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2021
17 Joshi M, Adak B, Butola B S. Polyurethane nanocomposite based gas barrier films, membranes and coatings: A review on synthesis, characterization and potential applications [J]. Prog. Mater. Sci., 2018, 97: 230
18 Cui M J, Ren S M, Zhao H C, et al. Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating [J]. Chem. Eng. J., 2018, 335: 255
19 Zheng L, Jerrams S, Xu Z C, et al. Enhanced gas barrier properties of graphene oxide/rubber composites with strong interfaces constructed by graphene oxide and sulfur [J]. Chem. Eng. J., 2020, 383: 123100
20 Genchev G, Bosch C, Wanzenberg E, et al. Role of molybdenum in corrosion of iron-based alloys in contact with hydrogen sulfide containing solution [J]. Mater. Corros., 2017, 68: 595
21 Wallaert E, Depover T, De Graeve I, et al. FeS corrosion products formation and hydrogen uptake in a sour environment for quenched & tempered steel [J]. Metals, 2018, 8: 62
22 Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2 [J]. ACS Nano, 2011, 5: 9703
doi: 10.1021/nn203879f pmid: 22087740
23 Li X L, Chen L, Liu H M, et al. Prevention of hydrogen damage using MoS2 coating on iron surface [J]. Nanomaterials, 2019, 9: 382
24 Tomio A, Sagara M, Doi T, et al. Role of alloyed molybdenum on corrosion resistance of austenitic Ni-Cr-Mo-Fe alloys in H2S-Cl- environments [J]. Corros. Sci., 2015, 98: 391
25 Yue X Q, Zhang L, Ma L, et al. Influence of a small velocity variation on the evolution of the corrosion products and corrosion behaviour of super 13Cr SS in a geothermal CO2 containing environment [J]. Corros. Sci., 2021, 178: 108983
26 Wang N, Zhang Y N, Chen J S, et al. Dopamine modified metal-organic frameworks on anti-corrosion properties of waterborne epoxy coatings [J]. Prog. Org. Coat., 2017, 109: 126
27 Lu C Q. Corrosion inhibition mechanism of molybdate [J]. Mater. Prot., 1996, (10): 22
27 路长青. 钼酸盐的缓蚀机理 [J]. 材料保护, 1996, (10): 22
28 Wang Y, Chai M C, Wang Y Y. Study of the corrosion-inhibiting performance with compound molybdate formulation [J]. Shanghai Chem. Ind., 2003, (7): 23
28 王 瑛, 柴明成, 王宇友. 钼酸盐与其他缓蚀剂协同缓蚀效应的研究 [J]. 上海化工, 2003, (7): 23
29 Chen X. Study on corrosion performance of molybdate and hexagonal boron nitride doped epoxy coating [D]. Zhenjiang: Jiangsu University of Science and Technology, 2018
29 陈 曦. 钼酸盐及六方氮化硼掺杂环氧树脂耐蚀性能的研究 [D]. 镇江: 江苏科技大学, 2018
30 Ma L W, Wang X B, Wang J K, et al. Graphene oxide-cerium oxide hybrids for enhancement of mechanical properties and corrosion resistance of epoxy coatings [J]. J. Mater. Sci., 2021, 56: 10108
31 Xie L F, Zhou W L, Zhou B, et al. Exploring salt-mist corrosion resistance of GPTMS functionalized graphene oxide reinforced epoxy resin composite coating on shot-peened Ti-15333 titanium alloy [J]. Surf. Inter., 2024, 44: 103675
32 Tran N A, Jang S, Joo S W. Graphene epoxy spray on 3D-printed acrylonitrile butadiene styrene substrates as O2 gas barrier [J]. Appl. Surf. Sci., 2019, 497: 143745
33 Rajabi M, Rashed G R, Zaarei D. Assessment of graphene oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel [J]. Corros. Eng. Sci. Technol., 2015, 50: 509
34 Yuan S C, Sun Y, Cong C, et al. A bi-layer orientated and functionalized graphene-based composite coating with unique hydrogen gas barrier and long-term anti-corrosion performance [J]. Carbon, 2023, 205: 54
35 Li X Y, Bandyopadhyay P, Nguyen T T, et al. Fabrication of functionalized graphene oxide/maleic anhydride grafted polypropylene composite film with excellent gas barrier and anticorrosion properties [J]. J. Memb. Sci., 2018, 547: 80
36 Wan H X, Cheng Z L, Song D D, et al. Preparation and performance study of waterborne epoxy resin/non-covalent modified graphene oxide hydrogen barrier coatings [J]. Int. J. Hydrog. Energy, 2024, 53: 218
37 Young K T, Smith C, Krentz T M, et al. Graphene synthesized by chemical vapor deposition as a hydrogen isotope permeation barrier [J]. Carbon, 2021, 176: 106
38 Protyai M I H, Bin Rashid A. A comprehensive overview of recent progress in MXene-based polymer composites: Their fabrication processes, advanced applications, and prospects [J]. Heliyon, 2024, 10: e37030
39 Zhou D S, Zhao D L, Sun H F, et al. Two-dimensional material MXene and its derivatives enhance the hydrogen storage properties of MgH2: A review and summary [J]. Int. J. Hydrog. Energy, 2024, 71: 279
40 Dixit F, Zimmermann K, Alamoudi M, et al. Application of MXenes for air purification, gas separation and storage: A review [J]. Renew. Sustain. Energy Rev., 2022, 164: 112527
41 Shi K J, Meng X Y, Xiao S, et al. MXene coatings: novel hydrogen permeation barriers for pipe steels [J]. Nanomaterials, 2021, 11: 2737
42 Xuan X Y, Qu S P, Zhao X Y. Preparation and performance of CeO2@MWCNTs/EP composite coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 992
42 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 992
doi: 10.11902/1005.4537.2022.307
43 Sayed M, Kamal El-Dean A M, Ahmed M, et al. Design, synthesis, and characterization of novel pyrimidines bearing indole as antimicrobial agents [J]. J. Chin. Chem. Soc., 2019, 66: 218
44 Guergova D, Stoyanova E, Stoychev D, et al. Self-healing effect of ceria electrodeposited thin films on stainless steel in aggressive 0.5 mol/L NaCl aqueous solution [J]. J. Rare Earths, 2015, 33: 1212
45 Yuan S C, Sun Y, Yang C S, et al. A novel dual-functional epoxy-based composite coating with exceptional anti-corrosion and enhanced hydrogen gas barrier properties [J]. Chem. Eng. J., 2022, 449: 137876
46 Yang X, Gao Z M, Wang X Y, et al. Influence of fusion bonded epoxy powder on Corrosion, wear performance of galvanized composite coating and hydrogen permeation behavior to based carbon steel [J]. Mater. Lett., 2021, 296: 129922
47 Xu M, Wang T J, Chang X L, et al. Study on gas phase hydrogen permeation and hydrogen damage behavior of X80 pipeline steel [J]. Mech. Eng., 2024. DOI: 10.6052/1000-0879-24-248
47 徐 猛, 王铁军, 常雪伦 等. X80管线钢气相氢渗透及氢损伤行为研究 [J]. 力学与实践, 2024. DOI: 10.6052/1000-0879-24-248
48 Li Y X, Zhang R, Liu C W, et al. Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel [J]. Oil Gas Storage Transp., 2022, 41: 732
48 李玉星, 张 睿, 刘翠伟 等. 掺氢天然气管道典型管线钢氢脆行为 [J]. 油气储运, 2022, 41: 732
49 Zhang H W, Zhao J, Li J F, et al. Research progress on corrosion and hydrogen embrittlement in hydrogen-natural gas pipeline transportation [J]. Nat. Gas Ind., 2023, 43(6): 126
49 张烘玮, 赵 杰, 李敬法 等. 天然气掺氢输送环境下的腐蚀与氢脆研究进展 [J]. 天然气工业, 2023, 43(6): 126
[1] 王明洋, 夏大海. 高强铝合金氢脆机理研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[2] 白钲清, 农靖, 韦世宸, 徐健. 预充氢对Ni-Cr合金在高温高压水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
[3] 张倩茹, 孙擎擎. 氢促进局部塑性变形理论的发展趋势[J]. 中国腐蚀与防护学报, 2025, 45(2): 271-282.
[4] 万红江, 明洪亮, 王俭秋, 韩恩厚. H2O2CO掺杂对X52管线钢氢脆敏感性影响研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[5] 程凯源, 彭杨, 黄峰, 程向龙, 徐云峰, 彭志贤, 刘静. 典型无缝钢管钢掺氢天然气环境适应性及氢致损伤机理[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[6] 崔德春, 熊亮, 于邦廷, 吴浩志, 董绍华, 陈林. 含腐蚀缺陷氢气管道局部氢浓度有限元模拟分析[J]. 中国腐蚀与防护学报, 2025, 45(2): 359-370.
[7] 杨震宇, 基超, 郭丽雅, 徐闰, 彭伟, 赵洪山, 韦习成, 董瀚. 6种典型商用纯铁和钢材在3.5%NaCl溶液中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[8] 汤熠鑫, 张飞, 崔中雨, 崔洪芝, 李燚周. 氢对2205双相不锈钢在3.5%NaCl溶液中缝隙腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
[9] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[10] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[11] 赵杰, 徐广旭, 张烘玮, 李敬法, 吕冉, 王嘉龙, 闫东雷. X80掺氢天然气管道的氢脆与腐蚀耦合作用研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[12] 刘天乐, 韦博鑫, 付安庆, 苏航, 陈廷枢, 王超明, 王邃. 掺氢环境下X80管线钢气相氢损伤研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[13] 缪浩, 尹程辉, 王洪伦, 高逸晖, 陈俊航, 张昊, 李波, 吴俊升, 肖葵. 污染海洋大气环境下不锈钢加速腐蚀试验环境谱评价及相关性[J]. 中国腐蚀与防护学报, 2025, 45(2): 449-459.
[14] 姜慧芳, 刘扬豪, 刘莹, 李迎超, 于浩波, 赵博, 陈曦. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[15] 张慧云, 郑留伟, 梁伟. 退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.