|
|
环境障涂层材料及结构优化研究进展 |
任明泽, 董琳( ), 杨冠军 |
西安交通大学材料科学与工程学院 金属材料国家重点实验室 西安 710049 |
|
Research Progress on Material and Structure Optimization of Environmental Barrier Coatings |
REN Mingze, DONG Lin( ), YANG Guanjun |
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
任明泽, 董琳, 杨冠军. 环境障涂层材料及结构优化研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 33-45.
Mingze REN,
Lin DONG,
Guanjun YANG.
Research Progress on Material and Structure Optimization of Environmental Barrier Coatings[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 33-45.
1 |
Wu Y, Guo X Y, He D Y, et al. Research progress of CMAS corrosion and protection method for thermal barrier coatings in aero-engines [J]. China Surf. Eng., 2023, 36(5): 1
|
1 |
吴 杨, 郭星晔, 贺定勇 等. 航空发动机热障涂层的CMAS腐蚀与防护研究进展 [J]. 中国表面工程, 2023, 36(5): 1
|
2 |
Sun Y, Li Z B, Ma L W, et al. Research progress on corrosion failure of high-temperature coatings in aero-engines [J]. Therm. Spray Technol., 2024, 16(2): 1
|
2 |
孙 毅, 李宗宝, 马菱薇 等. 航空发动机高温涂层腐蚀失效研究进展 [J]. 热喷涂技术, 2024, 16(2): 1
|
3 |
Padture N P. Advanced structural ceramics in aerospace propulsion [J]. Nat. Mater., 2016, 15: 809
|
4 |
Zou L X, Chang H, Gao M H, et al. Research progress and development trend of ground heavy duty gas turbine and its thermal barrier coatings [J]. China Surf. Eng., 2024, 37(1): 18
|
4 |
邹兰欣, 常 辉, 高明浩 等. 地面重型燃气轮机及其热障涂层的研究进展与发展趋势 [J]. 中国表面工程, 2024, 37(1): 18
|
5 |
Zhu D M. Advanced environmental barrier coatings for SiC/SiC ceramic matrix composite turbine components [A]. OhjiT, SinghM. Engineered Ceramics: Current Status and Future Prospects [M]. Hoboken: John Wiley & Sons, Inc., 2016: 187
|
6 |
Qi H X, Ma R, Meng G H, et al. Research progress on aluminized coatings for high temperature blades [J]. Mater. Prot., 2022, 55(10): 147
|
6 |
齐浩雄, 马 瑞, 孟国辉 等. 高温叶片用渗铝涂层的研究进展 [J]. 材料保护, 2022, 55(10): 147
|
7 |
Ma Z, Liu L, Zheng W. Environmental barrier coating for aeroengines: materials and properties [J]. Adv. Ceram., 2019, 40: 331
|
7 |
马 壮, 刘 玲, 郑 伟. 航空发动机环境障涂层: 材料及性能 [J]. 现代技术陶瓷, 2019, 40: 331
|
8 |
Gatzen C, Mack D E, Guillon O, et al. Water vapor corrosion test using supersonic gas velocities [J]. J. Am. Ceram. Soc., 2019, 102: 6850
doi: 10.1111/jace.16595
|
9 |
Lee K N. Special issue: environmental barrier coatings [J]. Coatings, 2020, 10: 512
|
10 |
Shi T J, Zhang X, Peng H R, et al. Research status and prospect of thermal barrier coating materials system [J]. Therm. Spray Technol., 2023, 15(2): 1
|
10 |
史天杰, 张 鑫, 彭浩然 等. 热障涂层材料体系研究现状及展望 [J]. 热喷涂技术, 2023, 15(2): 1
|
11 |
Zhou B Y, Cui Y J, Wang C L, et al. Research progress in rare earth silicate environmental barrier coatings [J]. J. Mater. Eng., 2023, 51(12): 12
doi: 10.11868/j.issn.1001-4381.2023.000017
|
11 |
周邦阳, 崔永静, 王长亮 等. 稀土硅酸盐环境障涂层研究进展 [J]. 材料工程, 2023, 51(12): 12
doi: 10.11868/j.issn.1001-4381.2023.000017
|
12 |
Cong K, Gao X Z, Zhang B P. Development of environmental barrier coatings for aero-engines [J]. J. Propul. Technol., 2021, 42: 2161
|
12 |
丛 凯, 高贤志, 张宝鹏. 航空发动机用环境障涂层的发展 [J]. 推进技术, 2021, 42: 2161
|
13 |
Bai B T, Zhang D M, Ji X J, et al. Research progress on the selection of materials for environmental barrier coating [J]. Therm. Spray Technol., 2022, 14(3): 1
|
13 |
白博添, 章德铭, 冀晓鹃 等. 环境障涂层选材研究进展 [J]. 热喷涂技术, 2022, 14(3): 1
|
14 |
Wang J N, Wang C H, Wang Y, et al. Review of rare earth silicate environmental barrier coatings [J]. China Surf. Eng., 2021, 34(6): 21
|
14 |
王佳宁, 王超会, 王 铀 等. 稀土硅酸盐环境障涂层综述 [J]. 中国表面工程, 2021, 34(6): 21
doi: 10.11933/j.issn.1007-9289.20210603001
|
15 |
Olson D H, Deijkers J A, Quiambao-Tomko K, et al. Evolution of microstructure and thermal conductivity of multifunctional environmental barrier coating systems [J]. Mater. Today Phys., 2021, 17: 100304
|
16 |
Lee K N, Miller R A. Development and environmental durability of mullite and Mullite/YSZ Dual layer coatings for SiC and Si3N4 ceramics [J]. Surf. Coat. Technol., 1996, 86-87: 142
|
17 |
Zhou B Y, Cui Y J, Wang C L, et al. Effect of plasma spraying parameters on microstructure and property of the BSAS based abradable environmental barrier coatings [J]. Therm. Spray Technol., 2023, 15(2): 42
|
17 |
周邦阳, 崔永静, 王长亮 等. 等离子喷涂工艺参数对BSAS基可磨耗环境障涂层组织性能影响 [J]. 热喷涂技术, 2023, 15(2): 42
|
18 |
Chen L, Yang G J, Li C X, et al. Thermally sprayed ceramic coatings for wear-resistant application and coating structure tailoring towards advanced wear-resistant coatings [J]. Adv. Ceram., 2016, 37(1): 3
|
18 |
陈 林, 杨冠军, 李成新 等. 热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法 [J]. 现代技术陶瓷, 2016, 37(1): 3
|
19 |
Zhuang M X, Du Y Y, Yuan J H, et al. Research progress of high temperature failure of plasma sprayed environmental barrier coatings [J]. China Surf. Eng., 2020, 33(3): 33
|
19 |
庄铭翔, 都业源, 袁建辉 等. 等离子体喷涂环境障涂层高温失效研究进展 [J]. 中国表面工程, 2020, 33(3): 33
|
20 |
Richards B T, Wadley H N G. Plasma spray deposition of tri-layer environmental barrier coatings [J]. J. Eur. Ceram. Soc., 2014, 34: 3069
|
21 |
Richards B T, Young K A, de Francqueville F, et al. Response of ytterbium disilicate-silicon environmental barrier coatings to thermal cycling in water vapor [J]. Acta Mater., 2016, 106: 1
|
22 |
Liu Y W, Nong Z S. Research status of ceramic coatings prepared by sol-gel method [J]. Mater. Prot., 2023, 56(5): 173
|
22 |
刘雨薇, 农智升. 溶胶—凝胶法制备陶瓷涂层的研究现状 [J]. 材料保护, 2023, 56(5): 173
doi: 10.16577/j.issn.1001-1560.2023.0121
|
23 |
Yan Z, Peng H R, Ji X J, et al. Preparation of Yb2Si2O7 precursor and its agglomerated powder for low pressure plasma spraying [J]. Therm. Spray Technol., 2022, 14(3): 38
|
23 |
颜 正, 彭浩然, 冀晓鹃 等. Yb2Si2O7前驱体及其低压等离子喷涂用粉末制备研究 [J]. 热喷涂技术, 2022, 14(3): 38
|
24 |
Yilmaz E, Paksoy A H, Gibson G, et al. Constrained sintering and thermal ageing behaviour of electrophoretically deposited Yb2Si2O7 environmental barrier coating [J]. J. Eur. Ceram. Soc., 2023, 43: 6427
|
25 |
Chen H F, Klemm H. Environmental barrier coatings for silicon nitride [J]. Key Eng. Mater., 2011, 484: 139
|
26 |
Zhang H B, Duan W H, Zhang T, et al. Research overview of thermal barrier coating materials [J]. Mater. Prot., 2022, 55(7): 177
|
26 |
张洪博, 段文皓, 张 涛 等. 热障涂层材料研究概述 [J]. 材料保护, 2022, 55(7): 177
|
27 |
Xu B S, Liu S C. China Material Engineering Ceremony: Material Surface Engineering (Part I) [M]. Beijing: Chemical Industry Press, 2006: 58
|
27 |
徐滨士, 刘世参. 中国材料工程大典: 材料表面工程(上) [M]. 北京: 化学工业出版社, 2006: 58
|
28 |
Zhang Y, Guo L L, Ju L Y, et al. Analysis of flow field and particle characteristics of atmospheric plasma spraying [J]. Powder Metall. Ind., 2024, 34(2): 49
|
28 |
张 勇, 郭龙龙, 鞠录岩 等. 大气等离子喷涂流场与粒子特性分析 [J]. 粉末冶金工业, 2024, 34(2): 49
|
29 |
Wang H Y, Zhang J, Sun L C, et al. Microstructure and phase composition evolution of dual-phase ytterbium silicate coatings plasma sprayed from stoichiometric Yb2Si2O7 feedstock powder [J]. Surf. Coat. Technol., 2022, 437: 128373
|
30 |
Li G R, Wang L S, Yang G J. Achieving self-enhanced thermal barrier performance through a novel hybrid-layered coating design [J]. Mater. Des., 2019, 167: 107647
|
31 |
Yang B, Li G R, Xu T, et al. Densification method of air-plasma-sprayed environmental barrier coatings achieved by pre-heat treatment [J]. J. Mater. Eng., 2021, 49(11): 116
doi: 10.11868/j.issn.1001-4381.2020.001156
|
31 |
杨 博, 李广荣, 徐 彤 等. 大气等离子喷涂环境障涂层的预热处理致密化方法 [J]. 材料工程, 2021, 49(11): 116
|
32 |
Guo Q, He W T, He J, et al. Characterization of Yb2SiO5-based environmental barrier coating prepared by plasma spray-physical vapor deposition [J]. Ceram. Int., 2022, 48: 19990
|
33 |
Zhang X, Liu M, Zhang X F, et al. Research progress of high temperature protective coatings by plasma spray-physical vapor deposition [J]. China Surf. Eng., 2018, 31(5): 39
|
33 |
张 啸, 刘 敏, 张小锋 等. 等离子喷涂-物理气相沉积高温防护涂层研究进展 [J]. 中国表面工程, 2018, 31(5): 39
|
34 |
Deng C M, Xiao J, Cao J X, et al. Research progress of PS-PVD rare earth high temperature functional coatings [J]. Mater. Res. Appl., 2019, 13(3): 247
|
34 |
邓春明, 肖 娟, 曹家旭 等. 等离子喷涂-物理气相沉积稀土高温功能涂层研究进展 [J]. 材料研究与应用, 2019, 13(3): 247
|
35 |
Presby M J, Harder B J. Solid particle erosion of a plasma spray-physical vapor deposition environmental barrier coating in a combustion environment [J]. Ceram. Int., 2021 47: 24403
|
36 |
Xiao S K, Li J Z, Huang P X, et al. Evaluation of environmental barrier coatings: a review [J]. Int. J. Appl. Ceram. Technol., 2023, 20: 2055
|
37 |
Carpenter M A, Salje E K H, Graeme-Barber A. Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals [J]. Eur. J. Mineral., 1998, 10: 621
|
38 |
Bakan E, Vaßen R. Oxidation kinetics of atmospheric plasma sprayed environmental barrier coatings [J]. J. Eur. Ceram. Soc., 2022, 42: 5122
|
39 |
Hu X P, Jiang W H, Li B. High Temperature water oxygen corrosion mechanism of ytterbium disilicate environmental barrier coatings [J]. Mater. Prot., 2024, 57(3): 63
|
39 |
胡祥鹏, 蒋文昊, 李 彪. 双硅酸镱环境障涂层的高温水氧腐蚀机理研究 [J]. 材料保护, 2024, 57(3): 63
|
40 |
Richards B T, Begley M R, Wadley H N G. Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor [J]. J. Am. Ceram. Soc., 2015, 98: 4066
|
41 |
Bakan E, Sohn Y J, Kunz W, et al. Effect of Processing on high-velocity water vapor recession behavior of Yb-silicate environmental barrier coatings [J]. J. Eur. Ceram. Soc., 2019, 39: 1507
|
42 |
Bakan E, Kindelmann M, Kunz W, et al. High-velocity water vapor corrosion of Yb-silicate: sprayed vs. sintered body [J]. Scr. Mater., 2020, 178: 468
|
43 |
Wang C. Deposition characteristics and corrosion mechanism under water vapor of Yb2SiO5 environmental barrier coatings [D]. Guangzhou: South China University of Technology, 2020
|
43 |
王 超. Yb2SiO5环境障涂层沉积特性及水蒸气腐蚀机制 [D]. 广州: 华南理工大学, 2020
|
44 |
Guo X T, Zhang Y L, Li T, et al. High-entropy rare-earth disilicate (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7: a potential environmental barrier coating material [J]. J. Eur. Ceram. Soc., 2022, 42: 3570
|
45 |
Poerschke D L, Jackson R W, Levi C G. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions [J]. Annu. Rev. Mater. Res., 2017, 47: 297
|
46 |
Turcer L R, Krause A R, Garces H F, et al. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part II, β-Yb2Si2O7 and β-Sc2Si2O7 [J]. J. Eur. Ceram. Soc., 2018. 38: 3914
|
47 |
Costa G C C, Jacobson N S. Mass spectrometric measurements of the silica activity in the Yb2O3-SiO2 system and implications to assess the degradation of silicate-based coatings in combustion environments [J]. J. Eur. Ceram. Soc., 2015, 35: 4259
|
48 |
Duffy J A. Acid-base reactions of transition metal oxides in the solid state [J]. J. Am. Ceram. Soc., 1997, 80: 1416
|
49 |
Turcer L R, Krause A R, Garces H F. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part I, YAlO3 and γ-Y2Si2O7 [J]. J. Eur. Ceram. Soc., 2018, 38: 3905
|
50 |
Du Z, Chen L, Meng G H, et al. Research progresses on modification technology and application of enamel coating [J]. Mater. Prot., 2023, 56(4): 158
|
50 |
杜 撰, 陈 林, 孟国辉 等. 搪瓷涂层改性技术及应用研究进展 [J]. 材料保护, 2023, 56(4): 158
|
51 |
Paksoy A H, Martins J P, Cao H T, et al. Influence of alumina addition on steam corrosion behaviour of ytterbium disilicates for environmental barrier coating applications [J]. Corros. Sci., 2022, 207: 110555
|
52 |
Yang B. Densification of APS-Yb2Si2O7 environmental barrier coa-tings and property of water vapor corrosion resistance [D]. Xi'an: Xi'an Jiaotong University, 2021
|
52 |
杨 博. 等离子喷涂Yb2Si2O7环境障涂层的致密化研究方法与抗水氧腐蚀性能研究 [D]. 西安: 西安交通大学, 2021
|
53 |
Wen Z L, Xiao P, Li Z, et al. Thermal cycling behavior and oxidation resistance of SiC whisker-toughened-mullite/SiC coated carbon/carbon composites in burner rig tests [J]. Corros. Sci., 2016, 106: 179
|
54 |
Dong L, Liu M J, Zhang X F, et al. Improved water vapor resistance of environmental barrier coatings densified by aluminum infiltration [J]. Ceram. Int., 2022, 48: 23638
|
55 |
Lü K Y, Dong S J, Huang Y, et al. Thermal shock behavior of La-MgAl11O19/Yb2Si2O7/Si thermal/environmental barrier coatings with LaMgAl11O19-LiAlSiO4 transition layer [J]. Surf. Coat. Technol., 2022, 443: 128
|
56 |
Singhal S C, Lange F F. Effect of alumina content on the oxidation of hot-pressed silicon carbide [J]. J. Am. Ceram. Soc., 1975, 58: 433
|
57 |
Chen L, Wang W J, Li J H, et al. Suppressing the phase-transition-induced cracking of SiO2 TGOs by lattice solid solution [J]. J. Eur. Ceram. Soc., 2023, 43: 3201
|
58 |
Harder B J. Oxidation performance of Si-HfO2 environmental barrier coating bond coats deposited via plasma spray-physical vapor deposition [J]. Surf. Coat. Technol., 2020, 384: 125311
|
59 |
Chen L, Luo J C, Yang W Q, et al. Durable dual-state duplex Si-HfO2 with excellent oxidation and cracking resistance [J] J. Adv. Ceram., 2024, 13: 388
|
60 |
Miyazaki T, Usami S, Arai Y, et al. Oxidation behavior of ytterbium silicide in air and steam [J]. Intermetallics, 2021, 128: 106
|
61 |
Golden R A, Opila E J. High-temperature oxidation of yttrium silicides [J]. J. Mater. Sci., 2018, 53: 3981
|
62 |
Wang W J, Luo J C, Chen L, et al. One-step multi-compositional oxidation of YSi alloy: experiments and Ab initio computation [J]. J. Mater. Sci. Technol., 2023, 158: 253
doi: 10.1016/j.jmst.2023.02.042
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|