Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 33-45     CSTR: 32134.14.1005.4537.2024.283      DOI: 10.11902/1005.4537.2024.283
  综合评述 本期目录 | 过刊浏览 |
环境障涂层材料及结构优化研究进展
任明泽, 董琳(), 杨冠军
西安交通大学材料科学与工程学院 金属材料国家重点实验室 西安 710049
Research Progress on Material and Structure Optimization of Environmental Barrier Coatings
REN Mingze, DONG Lin(), YANG Guanjun
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

任明泽, 董琳, 杨冠军. 环境障涂层材料及结构优化研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 33-45.
Mingze REN, Lin DONG, Guanjun YANG. Research Progress on Material and Structure Optimization of Environmental Barrier Coatings[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 33-45.

全文: PDF(21554 KB)   HTML
摘要: 

环境障涂层(EBC)为碳化硅陶瓷基复合材料(SiC-CMC)提供了有效的高温水蒸气防护,成为新一代航空发动机高温部件的关键材料。本文综述了稀土硅酸盐/Si粘结层EBC的制备技术与典型结构特征,探讨了在富含水氧、CMAS熔盐的高温发动机环境下的服役失效机理,进一步针对涂层热失配、高温水氧腐蚀、CMAS腐蚀、粘结层氧化等问题,从材料和结构角度总结了硅酸盐面层和Si粘结层的设计及优化方法,同时,面对更高温度的服役需求,介绍了超高温面层结构设计和新型耐高温粘结层材料设计研究进展,最后展望了高性能环境障涂层的未来研究方向。

关键词 环境障涂层(EBC)稀土硅酸盐热喷涂腐蚀氧化    
Abstract

Environment barrier coatings (EBC) provide effective protection from high-temperature water vapor corrosion for silicon carbide ceramic matrix composites (SiC-CMC), serving as a key material for the next-generation high-temperature components of aircraft engines. This paper reviews the preparation technology and typical structural characteristics for EBC of rare earth silicate/Si bond layer, and discusses the service failure mechanisms in high-temperature engine environments rich in water vapor and deposits CaO-MgO-Al2O3-SiO2 (CMAS). Furthermore, addressing issues such as thermal mismatch of coatings, high-temperature water vapor corrosion, CMAS corrosion, and bond coat oxidation, the design and optimization methods of silicate top coats and Si bond coats are summarized from the perspectives of materials and structures. In response to the demand for even higher operating temperatures, advancements in ultra-high-temperature surface layer structure design and the development of new high-temperature-resistant bond coat materials are introduced. Finally, future research directions for high-performance environment barrier coatings are discussed.

Key wordsenvironmental barrier coatings    rare earth silicate    thermal spraying    corrosion    oxidation
收稿日期: 2024-09-03      32134.14.1005.4537.2024.283
ZTFLH:  TG174.4  
基金资助:国家自然科学基金(52301102);中国博士后科学基金(2024M752571)
通讯作者: 董琳,E-mail:donglin@xjtu.edu.cn,研究方向为环境障涂层
Corresponding author: DONG Lin, E-mail: donglin@xjtu.edu.cn
作者简介: 任明泽,男,1999年生,硕士生
图1  燃气涡轮发动机材料温度的预测与研究进展[3]
图2  EBC材料应满足的条件
Materialα / × 10-6·K-1λ / W·(m·K)-1
SiC4.5~5-
Si3.5~4.510~20
Mullite5~6-
BSAS (monoclinic)4~5-
BSAS (hexagonal)7~8-
Yb2SiO57~80.74~1.15
Er2SiO57~81.42
Y2SiO57~81.65
Gd2SiO59.9~10.31.45
Lu2SiO56.71.63
Yb2Si2O74~62.0
Lu2Si2O73.8-
Yb2O36.8~8.4-
YSZ10.52~5
表1  常见EBC候选材料的热学参数[3,6,9]
图3  EBC结构体系演化[20,21]
图4  低温法制备的EBC典型结构[24,25]
图5  热喷涂法成膜原理[27]
图6  APS法制备的EBC的典型结构[29]
图7  低压下液相沉积为主的EBC典型结构[34,35]
图8  EBC的主要失效形式
图9  SiO2-TGO增厚开裂相应的结构演变[39]
图10  EBC高温水氧腐蚀后的显微结构特征[41]
图11  温度及气流速率对水蒸气腐蚀形貌的影响[3,42,43]
图12  CMAS腐蚀后的EBC面层显微结构[44]
图13  EBC的高温CMAS腐蚀[45,46]
图14  稀土硅酸盐固溶高熵化对其水蒸气稳定性的影响[44]
图15  Al2O3掺杂对YbDS面层水蒸气腐蚀形貌的影响[51]
图16  预热温度对Yb2Si2O7等离子喷涂沉积片层形貌特征的影响[52]
图17  熔渗铝致密化对EBC水氧腐蚀形貌的影响[54]
图18  具有LMA/LMA-LAS/YbDS/Si多功能层的T/EBC典型结构[55]
图19  Si-HfO2新型粘结层的显微结构特征[59]
图20  YSi新型粘结层高温氧化后形貌特征[62]
1 Wu Y, Guo X Y, He D Y, et al. Research progress of CMAS corrosion and protection method for thermal barrier coatings in aero-engines [J]. China Surf. Eng., 2023, 36(5): 1
1 吴 杨, 郭星晔, 贺定勇 等. 航空发动机热障涂层的CMAS腐蚀与防护研究进展 [J]. 中国表面工程, 2023, 36(5): 1
2 Sun Y, Li Z B, Ma L W, et al. Research progress on corrosion failure of high-temperature coatings in aero-engines [J]. Therm. Spray Technol., 2024, 16(2): 1
2 孙 毅, 李宗宝, 马菱薇 等. 航空发动机高温涂层腐蚀失效研究进展 [J]. 热喷涂技术, 2024, 16(2): 1
3 Padture N P. Advanced structural ceramics in aerospace propulsion [J]. Nat. Mater., 2016, 15: 809
4 Zou L X, Chang H, Gao M H, et al. Research progress and development trend of ground heavy duty gas turbine and its thermal barrier coatings [J]. China Surf. Eng., 2024, 37(1): 18
4 邹兰欣, 常 辉, 高明浩 等. 地面重型燃气轮机及其热障涂层的研究进展与发展趋势 [J]. 中国表面工程, 2024, 37(1): 18
5 Zhu D M. Advanced environmental barrier coatings for SiC/SiC ceramic matrix composite turbine components [A]. OhjiT, SinghM. Engineered Ceramics: Current Status and Future Prospects [M]. Hoboken: John Wiley & Sons, Inc., 2016: 187
6 Qi H X, Ma R, Meng G H, et al. Research progress on aluminized coatings for high temperature blades [J]. Mater. Prot., 2022, 55(10): 147
6 齐浩雄, 马 瑞, 孟国辉 等. 高温叶片用渗铝涂层的研究进展 [J]. 材料保护, 2022, 55(10): 147
7 Ma Z, Liu L, Zheng W. Environmental barrier coating for aeroengines: materials and properties [J]. Adv. Ceram., 2019, 40: 331
7 马 壮, 刘 玲, 郑 伟. 航空发动机环境障涂层: 材料及性能 [J]. 现代技术陶瓷, 2019, 40: 331
8 Gatzen C, Mack D E, Guillon O, et al. Water vapor corrosion test using supersonic gas velocities [J]. J. Am. Ceram. Soc., 2019, 102: 6850
doi: 10.1111/jace.16595
9 Lee K N. Special issue: environmental barrier coatings [J]. Coatings, 2020, 10: 512
10 Shi T J, Zhang X, Peng H R, et al. Research status and prospect of thermal barrier coating materials system [J]. Therm. Spray Technol., 2023, 15(2): 1
10 史天杰, 张 鑫, 彭浩然 等. 热障涂层材料体系研究现状及展望 [J]. 热喷涂技术, 2023, 15(2): 1
11 Zhou B Y, Cui Y J, Wang C L, et al. Research progress in rare earth silicate environmental barrier coatings [J]. J. Mater. Eng., 2023, 51(12): 12
doi: 10.11868/j.issn.1001-4381.2023.000017
11 周邦阳, 崔永静, 王长亮 等. 稀土硅酸盐环境障涂层研究进展 [J]. 材料工程, 2023, 51(12): 12
doi: 10.11868/j.issn.1001-4381.2023.000017
12 Cong K, Gao X Z, Zhang B P. Development of environmental barrier coatings for aero-engines [J]. J. Propul. Technol., 2021, 42: 2161
12 丛 凯, 高贤志, 张宝鹏. 航空发动机用环境障涂层的发展 [J]. 推进技术, 2021, 42: 2161
13 Bai B T, Zhang D M, Ji X J, et al. Research progress on the selection of materials for environmental barrier coating [J]. Therm. Spray Technol., 2022, 14(3): 1
13 白博添, 章德铭, 冀晓鹃 等. 环境障涂层选材研究进展 [J]. 热喷涂技术, 2022, 14(3): 1
14 Wang J N, Wang C H, Wang Y, et al. Review of rare earth silicate environmental barrier coatings [J]. China Surf. Eng., 2021, 34(6): 21
14 王佳宁, 王超会, 王 铀 等. 稀土硅酸盐环境障涂层综述 [J]. 中国表面工程, 2021, 34(6): 21
doi: 10.11933/j.issn.1007-9289.20210603001
15 Olson D H, Deijkers J A, Quiambao-Tomko K, et al. Evolution of microstructure and thermal conductivity of multifunctional environmental barrier coating systems [J]. Mater. Today Phys., 2021, 17: 100304
16 Lee K N, Miller R A. Development and environmental durability of mullite and Mullite/YSZ Dual layer coatings for SiC and Si3N4 ceramics [J]. Surf. Coat. Technol., 1996, 86-87: 142
17 Zhou B Y, Cui Y J, Wang C L, et al. Effect of plasma spraying parameters on microstructure and property of the BSAS based abradable environmental barrier coatings [J]. Therm. Spray Technol., 2023, 15(2): 42
17 周邦阳, 崔永静, 王长亮 等. 等离子喷涂工艺参数对BSAS基可磨耗环境障涂层组织性能影响 [J]. 热喷涂技术, 2023, 15(2): 42
18 Chen L, Yang G J, Li C X, et al. Thermally sprayed ceramic coatings for wear-resistant application and coating structure tailoring towards advanced wear-resistant coatings [J]. Adv. Ceram., 2016, 37(1): 3
18 陈 林, 杨冠军, 李成新 等. 热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法 [J]. 现代技术陶瓷, 2016, 37(1): 3
19 Zhuang M X, Du Y Y, Yuan J H, et al. Research progress of high temperature failure of plasma sprayed environmental barrier coatings [J]. China Surf. Eng., 2020, 33(3): 33
19 庄铭翔, 都业源, 袁建辉 等. 等离子体喷涂环境障涂层高温失效研究进展 [J]. 中国表面工程, 2020, 33(3): 33
20 Richards B T, Wadley H N G. Plasma spray deposition of tri-layer environmental barrier coatings [J]. J. Eur. Ceram. Soc., 2014, 34: 3069
21 Richards B T, Young K A, de Francqueville F, et al. Response of ytterbium disilicate-silicon environmental barrier coatings to thermal cycling in water vapor [J]. Acta Mater., 2016, 106: 1
22 Liu Y W, Nong Z S. Research status of ceramic coatings prepared by sol-gel method [J]. Mater. Prot., 2023, 56(5): 173
22 刘雨薇, 农智升. 溶胶—凝胶法制备陶瓷涂层的研究现状 [J]. 材料保护, 2023, 56(5): 173
doi: 10.16577/j.issn.1001-1560.2023.0121
23 Yan Z, Peng H R, Ji X J, et al. Preparation of Yb2Si2O7 precursor and its agglomerated powder for low pressure plasma spraying [J]. Therm. Spray Technol., 2022, 14(3): 38
23 颜 正, 彭浩然, 冀晓鹃 等. Yb2Si2O7前驱体及其低压等离子喷涂用粉末制备研究 [J]. 热喷涂技术, 2022, 14(3): 38
24 Yilmaz E, Paksoy A H, Gibson G, et al. Constrained sintering and thermal ageing behaviour of electrophoretically deposited Yb2Si2O7 environmental barrier coating [J]. J. Eur. Ceram. Soc., 2023, 43: 6427
25 Chen H F, Klemm H. Environmental barrier coatings for silicon nitride [J]. Key Eng. Mater., 2011, 484: 139
26 Zhang H B, Duan W H, Zhang T, et al. Research overview of thermal barrier coating materials [J]. Mater. Prot., 2022, 55(7): 177
26 张洪博, 段文皓, 张 涛 等. 热障涂层材料研究概述 [J]. 材料保护, 2022, 55(7): 177
27 Xu B S, Liu S C. China Material Engineering Ceremony: Material Surface Engineering (Part I) [M]. Beijing: Chemical Industry Press, 2006: 58
27 徐滨士, 刘世参. 中国材料工程大典: 材料表面工程(上) [M]. 北京: 化学工业出版社, 2006: 58
28 Zhang Y, Guo L L, Ju L Y, et al. Analysis of flow field and particle characteristics of atmospheric plasma spraying [J]. Powder Metall. Ind., 2024, 34(2): 49
28 张 勇, 郭龙龙, 鞠录岩 等. 大气等离子喷涂流场与粒子特性分析 [J]. 粉末冶金工业, 2024, 34(2): 49
29 Wang H Y, Zhang J, Sun L C, et al. Microstructure and phase composition evolution of dual-phase ytterbium silicate coatings plasma sprayed from stoichiometric Yb2Si2O7 feedstock powder [J]. Surf. Coat. Technol., 2022, 437: 128373
30 Li G R, Wang L S, Yang G J. Achieving self-enhanced thermal barrier performance through a novel hybrid-layered coating design [J]. Mater. Des., 2019, 167: 107647
31 Yang B, Li G R, Xu T, et al. Densification method of air-plasma-sprayed environmental barrier coatings achieved by pre-heat treatment [J]. J. Mater. Eng., 2021, 49(11): 116
doi: 10.11868/j.issn.1001-4381.2020.001156
31 杨 博, 李广荣, 徐 彤 等. 大气等离子喷涂环境障涂层的预热处理致密化方法 [J]. 材料工程, 2021, 49(11): 116
32 Guo Q, He W T, He J, et al. Characterization of Yb2SiO5-based environmental barrier coating prepared by plasma spray-physical vapor deposition [J]. Ceram. Int., 2022, 48: 19990
33 Zhang X, Liu M, Zhang X F, et al. Research progress of high temperature protective coatings by plasma spray-physical vapor deposition [J]. China Surf. Eng., 2018, 31(5): 39
33 张 啸, 刘 敏, 张小锋 等. 等离子喷涂-物理气相沉积高温防护涂层研究进展 [J]. 中国表面工程, 2018, 31(5): 39
34 Deng C M, Xiao J, Cao J X, et al. Research progress of PS-PVD rare earth high temperature functional coatings [J]. Mater. Res. Appl., 2019, 13(3): 247
34 邓春明, 肖 娟, 曹家旭 等. 等离子喷涂-物理气相沉积稀土高温功能涂层研究进展 [J]. 材料研究与应用, 2019, 13(3): 247
35 Presby M J, Harder B J. Solid particle erosion of a plasma spray-physical vapor deposition environmental barrier coating in a combustion environment [J]. Ceram. Int., 2021 47: 24403
36 Xiao S K, Li J Z, Huang P X, et al. Evaluation of environmental barrier coatings: a review [J]. Int. J. Appl. Ceram. Technol., 2023, 20: 2055
37 Carpenter M A, Salje E K H, Graeme-Barber A. Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals [J]. Eur. J. Mineral., 1998, 10: 621
38 Bakan E, Vaßen R. Oxidation kinetics of atmospheric plasma sprayed environmental barrier coatings [J]. J. Eur. Ceram. Soc., 2022, 42: 5122
39 Hu X P, Jiang W H, Li B. High Temperature water oxygen corrosion mechanism of ytterbium disilicate environmental barrier coatings [J]. Mater. Prot., 2024, 57(3): 63
39 胡祥鹏, 蒋文昊, 李 彪. 双硅酸镱环境障涂层的高温水氧腐蚀机理研究 [J]. 材料保护, 2024, 57(3): 63
40 Richards B T, Begley M R, Wadley H N G. Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor [J]. J. Am. Ceram. Soc., 2015, 98: 4066
41 Bakan E, Sohn Y J, Kunz W, et al. Effect of Processing on high-velocity water vapor recession behavior of Yb-silicate environmental barrier coatings [J]. J. Eur. Ceram. Soc., 2019, 39: 1507
42 Bakan E, Kindelmann M, Kunz W, et al. High-velocity water vapor corrosion of Yb-silicate: sprayed vs. sintered body [J]. Scr. Mater., 2020, 178: 468
43 Wang C. Deposition characteristics and corrosion mechanism under water vapor of Yb2SiO5 environmental barrier coatings [D]. Guangzhou: South China University of Technology, 2020
43 王 超. Yb2SiO5环境障涂层沉积特性及水蒸气腐蚀机制 [D]. 广州: 华南理工大学, 2020
44 Guo X T, Zhang Y L, Li T, et al. High-entropy rare-earth disilicate (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7: a potential environmental barrier coating material [J]. J. Eur. Ceram. Soc., 2022, 42: 3570
45 Poerschke D L, Jackson R W, Levi C G. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions [J]. Annu. Rev. Mater. Res., 2017, 47: 297
46 Turcer L R, Krause A R, Garces H F, et al. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part II, β-Yb2Si2O7 and β-Sc2Si2O7 [J]. J. Eur. Ceram. Soc., 2018. 38: 3914
47 Costa G C C, Jacobson N S. Mass spectrometric measurements of the silica activity in the Yb2O3-SiO2 system and implications to assess the degradation of silicate-based coatings in combustion environments [J]. J. Eur. Ceram. Soc., 2015, 35: 4259
48 Duffy J A. Acid-base reactions of transition metal oxides in the solid state [J]. J. Am. Ceram. Soc., 1997, 80: 1416
49 Turcer L R, Krause A R, Garces H F. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part I, YAlO3 and γ-Y2Si2O7 [J]. J. Eur. Ceram. Soc., 2018, 38: 3905
50 Du Z, Chen L, Meng G H, et al. Research progresses on modification technology and application of enamel coating [J]. Mater. Prot., 2023, 56(4): 158
50 杜 撰, 陈 林, 孟国辉 等. 搪瓷涂层改性技术及应用研究进展 [J]. 材料保护, 2023, 56(4): 158
51 Paksoy A H, Martins J P, Cao H T, et al. Influence of alumina addition on steam corrosion behaviour of ytterbium disilicates for environmental barrier coating applications [J]. Corros. Sci., 2022, 207: 110555
52 Yang B. Densification of APS-Yb2Si2O7 environmental barrier coa-tings and property of water vapor corrosion resistance [D]. Xi'an: Xi'an Jiaotong University, 2021
52 杨 博. 等离子喷涂Yb2Si2O7环境障涂层的致密化研究方法与抗水氧腐蚀性能研究 [D]. 西安: 西安交通大学, 2021
53 Wen Z L, Xiao P, Li Z, et al. Thermal cycling behavior and oxidation resistance of SiC whisker-toughened-mullite/SiC coated carbon/carbon composites in burner rig tests [J]. Corros. Sci., 2016, 106: 179
54 Dong L, Liu M J, Zhang X F, et al. Improved water vapor resistance of environmental barrier coatings densified by aluminum infiltration [J]. Ceram. Int., 2022, 48: 23638
55 Lü K Y, Dong S J, Huang Y, et al. Thermal shock behavior of La-MgAl11O19/Yb2Si2O7/Si thermal/environmental barrier coatings with LaMgAl11O19-LiAlSiO4 transition layer [J]. Surf. Coat. Technol., 2022, 443: 128
56 Singhal S C, Lange F F. Effect of alumina content on the oxidation of hot-pressed silicon carbide [J]. J. Am. Ceram. Soc., 1975, 58: 433
57 Chen L, Wang W J, Li J H, et al. Suppressing the phase-transition-induced cracking of SiO2 TGOs by lattice solid solution [J]. J. Eur. Ceram. Soc., 2023, 43: 3201
58 Harder B J. Oxidation performance of Si-HfO2 environmental barrier coating bond coats deposited via plasma spray-physical vapor deposition [J]. Surf. Coat. Technol., 2020, 384: 125311
59 Chen L, Luo J C, Yang W Q, et al. Durable dual-state duplex Si-HfO2 with excellent oxidation and cracking resistance [J] J. Adv. Ceram., 2024, 13: 388
60 Miyazaki T, Usami S, Arai Y, et al. Oxidation behavior of ytterbium silicide in air and steam [J]. Intermetallics, 2021, 128: 106
61 Golden R A, Opila E J. High-temperature oxidation of yttrium silicides [J]. J. Mater. Sci., 2018, 53: 3981
62 Wang W J, Luo J C, Chen L, et al. One-step multi-compositional oxidation of YSi alloy: experiments and Ab initio computation [J]. J. Mater. Sci. Technol., 2023, 158: 253
doi: 10.1016/j.jmst.2023.02.042
[1] 范春华, 吴钱林, 薛山, 葛佳璐. 添加CrSi对火驱N80碳钢注气井氧化行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 231-236.
[2] 黄勤英, 李彧卓, 阳颖飞, 任盼, 王启伟. Pt改性共晶高熵合金AlCoCrFeNi2.1 热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[3] 赵立佳, 崔新宇, 王吉强, 熊天英. 冷喷涂B4C/Al复合涂层在硼酸溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[4] 李晗晔, 张志超, 王群昌, 古岩, 陈泽浩, 杨莎莎, 梅飞强. 钛合金表面碱洗及水洗留痕形成机制与腐蚀过程控制[J]. 中国腐蚀与防护学报, 2025, 45(1): 244-248.
[5] 郭静波, 杨守华, 周子翼, 牟仁德, 谢云, 舒小勇, 戴建伟, 彭晓. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[6] 王昆, 邹兰欣, 郭磊, 闫凯, 叶福兴, 刘洪丽, 郭洪波. 航空发动机及燃气轮机热障涂层高温腐蚀与防护[J]. 中国腐蚀与防护学报, 2025, 45(1): 1-19.
[7] 王粤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K444合金表面CVD渗铝涂层耐高温95%Na2SO4 + 5%NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 127-136.
[8] 许习文, 舒小勇, 陈智群, 何海瑞, 董舒赫, 房雨晴, 彭晓. DD6单晶Ni基高温合金表面CVDAl涂层的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.
[9] 张勇康, 翟海民, 李旭强, 李文生. Fe基非晶涂层在Na2SO4 + K2SO4Na2SO4 +NaCl混合盐中的热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[10] 陈辉, 徐福斌, 方亚雄, 朱忠亮. Super304H不锈钢在605 ℃640 ℃超临界水中的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[11] 裴海清, 肖竞博, 李微, 于昊玉, 温志勋, 岳珠峰. Al-O元素聚集对镍基单晶高温合金氧化影响的第一性原理研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[12] 张彩云, 李帅, 鲍泽斌, 朱圣龙, 王福会. 氧化不同时间(Ni, Pt)Al涂层的退除及再涂覆行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[13] 马宏宇, 刘叡, 崔宇, 柯培玲, 刘莉, 王福会. 静水压力对Cr/GLC叠层涂层腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 103-114.
[14] 张伟东, 崔宇, 刘莉, 王福会. 预氧化GH4169合金在中温固态NaClO2 + H2O气氛中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 182-190.
[15] 杨啸东, 李雪, 喻政, 杨莎莎, 陈明辉, 王福会. 搪瓷涂层在600 ℃熔融MgCl2-NaCl-KCl中热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 155-163.