|
|
锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究 |
马晓伟1, 薛荣洁1( ), 王涛涛1, 杨亮1, 刘珍光2 |
1.江苏理工学院材料工程学院 常州 213001 2.江苏科技大学材料科学与工程学院 镇江 212100 |
|
Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater |
MA Xiaowei1, XUE Rongjie1( ), WANG Taotao1, YANG Liang1, LIU Zhenguang2 |
1. School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China 2. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China |
引用本文:
马晓伟, 薛荣洁, 王涛涛, 杨亮, 刘珍光. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
Xiaowei MA,
Rongjie XUE,
Taotao WANG,
Liang YANG,
Zhenguang LIU.
Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 949-956.
[1] |
Wang H R, Wu J H, Wang J T, et al. Study on the corrosion & electrochemical properties of alloy AA5083 and the effect of active chlorine in seawater [J]. Electrochemistry, 2003, 9: 60
|
[1] |
王洪仁, 吴建华, 王均涛 等. 5083铝合金在海水中的腐蚀电化学行为及活性氯影响研究 [J]. 电化学, 2003, 9: 60
|
[2] |
Wang W H. Development and implication of amorphous alloys [J]. Bull. Chin. Acad. Sci., 2022, 37: 352
|
[2] |
汪卫华. 非晶合金材料发展趋势及启示 [J]. 中国科学院院刊, 2022, 37: 352
|
[3] |
Slobodyan M. Dissimilar welding and brazing of zirconium and its alloys: methods, parameters, metallurgy and properties of joints [J]. J. Manuf. Process., 2022, 75: 928
|
[4] |
Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, 44R: 45
|
[5] |
Kennedy D, Norman C. What don’t we know? [J]. Science, 2005, 309: 75
pmid: 15994521
|
[6] |
Xue R J, Zhao L Z, Yi J J. Strain aging in metallic glasses [J]. Mater. Lett., 2022, 306: 130931
|
[7] |
Khonik V A. Amorphous physics and materials: interstitialcy theory of condensed matter states and its application to non-crystalline metallic materials [J]. Chin. Phys., 2017, 26B: 016401
|
[8] |
Xue R J, Zhao L Z, Cai Y Q, et al. Correlation between boson peak and thermal expansion manifested by physical aging and high pressure [J]. Sci. China Phys. Mech. Astron., 2022, 65: 246111
|
[9] |
Liens A, Ter-Ovanessian B, Courtois N, et al. Effect of alloying elements on the microstructure and corrosion behavior of TiZr-based bulk metallic glasses [J]. Corros. Sci., 2020, 177: 108854
|
[10] |
Jiang J, Wang Z B, Pang S J, et al. Oxygen impurity improving corrosion resistance of a Zr-based bulk metallic glass in 3.5 wt% NaCl solution [J]. Corros. Sci., 2021, 192: 109867
|
[11] |
Wang D P, Wang S L, Wang J Q. Relationship between amorphous structure and corrosion behaviour in a Zr–Ni metallic glass [J]. Corros. Sci., 2012, 59: 88
|
[12] |
Sun B A, Wang W H. The fracture of bulk metallic glasses [J]. Prog. Mater. Sci., 2015, 74: 211
|
[13] |
Xie S H, Kruzic J J. Cold rolling improves the fracture toughness of a Zr-based bulk metallic glass [J]. J. Alloy. Compd., 2017, 694: 1109
|
[14] |
Chieh T C, Chu J, Liu C T, et al. Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions [J]. Mater. Lett., 2003, 57: 3022
|
[15] |
Wang Y F, Si J J, Si Y D, et al. Preparation and electrochemical corrosion performances of Zr-Ti-Ni-Cu-Be high-entropy bulk metallic glasses [J]. Mater. Sci. Eng., 2023, 289B: 116267
|
[16] |
Qin X J. Corrosion resistance of Zr41.5Ti14Cu13Ni10Be22.5 bulk amorphous alloy [J]. Corros. Sci. Prot. Technol., 2003, 15: 52
|
[16] |
秦秀娟. Zr41.5Ti14Cu13Ni10Be22.5大块非晶的耐蚀性能 [J]. 腐蚀科学与防护技术, 2003, 15: 52
|
[17] |
Gebert A, Mummert K, Eckert J, et al. Electrochemical investigations on the bulk glass forming Zr55Cu30Al10Ni5 alloy [J]. Mater. Corros., 1997, 48: 293
|
[18] |
Mudali U K, Scudino S, Kühn U, et al. Polarisation behaviour of the Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 alloy in different microstructural states in acid solutions [J]. Scr. Mater., 2004, 50: 1379
|
[19] |
Wang B, Xu K K, Shi X H, et al. Electrochemical and chemical corrosion behaviors of the in-situ Zr-based metallic glass matrix composites in chloride-containing solutions [J]. J. Alloy. Compd., 2019, 770: 679
doi: 10.1016/j.jallcom.2018.08.174
|
[20] |
Wiest A, Wang G Y, Huang L, et al. Corrosion and corrosion fatigue of Vitreloy glasses containing low fractions of late transition metals [J]. Scr. Mater., 2010, 62: 540
|
[21] |
Shi H Q, Zhao W B, Wei X W, et al. Effect of Ti addition on mechanical properties and corrosion resistance of Ni-free Zr-based bulk metallic glasses for potential biomedical applications [J]. J. Alloy. Compd., 2020, 815: 152636
|
[22] |
Gan Y Y, Liu H, Li G, et al. Effect of Ni on corrosion behavior of Zr-Cu-Al amorphous alloys in NaCl solution [J]. Rare Met. Mater. Eng., 2022, 51: 712
|
[22] |
甘有祎, 刘 昊, 李 广 等. Ni对Zr-Cu-Al系非晶合金在NaCl溶液中耐腐蚀性能的影响 [J]. 稀有金属材料与工程, 2022, 51: 712
|
[23] |
Cao Q P, Peng S, Zhao X N, et al. Effect of Nb substitution for Cu on glass formation and corrosion behavior of Zr-Cu-Ag-Al-Be bulk metallic glass [J]. J. Alloy. Compd., 2016, 683: 22
|
[24] |
Yang L, Zhang H R, Zhang S, et al. Effect of Cu content on the corrosion behavior of Ti-based bulk amorphous alloys in HCl solution [J]. Mater. Lett., 2023, 337: 133742
|
[25] |
Qiu Z W J, Li Z K, Fu H M, et al. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46: 33
doi: 10.1016/j.jmst.2019.10.043
|
[26] |
Tauseef A, Tariq N H, Akhter J I, et al. Corrosion behavior of Zr-Cu-Ni-Al bulk metallic glasses in chloride medium [J]. J. Alloy. Compd., 2010, 489: 596
|
[27] |
Wang D P, Li X, Chen Z. et al. Susceptibility of chloride ion concentration, temperature, and surface roughness on pitting corrosion of CoCrFeNi medium-entropy alloy [J]. Mater. Corros., 2022, 73: 106
|
[28] |
Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
|
[28] |
刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
doi: 10.11902/1005.4537.2020.184
|
[29] |
Yan Z, Zhang C Y, Wang L X, et al. Effect of structural stability on electrochemical corrosion properties of Zr-based amorphous alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 79
|
[29] |
阎 竹, 张晨阳, 王立新 等. 结构稳定性对Zr基非晶合金电化学腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 79
|
[30] |
Dai C D, Fu Y, Guo J X, et al. Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering [J]. Int. J. Min. Met. Mater., 2020, 27: 1388
|
[31] |
Ares A E, Gassa L M. Corrosion susceptibility of Zn-Al alloys with different grains and dendritic microstructures in NaCl solutions [J]. Corros. Sci., 2012, 59: 290
|
[32] |
Wang Y M, Yang Y H, Qu J L, et al. Effect of oxide layer on the electrochemical corrosion behavior of a Ni-based superalloy in 3.5 wt% NaCl [J]. Int. J. Electrochem. Sc., 2023, 18: 100310
|
[33] |
Ribeiro D V, Abrantes J C C, et al. Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach [J]. Constr. Build. Mater., 2016, 111: 98
|
[34] |
Kong W C, Li K M, Hu J. Immersion corrosion behavior, electrochemical performance and corrosion mechanism of subsonic flame sprayed FeCoCrMoSi amorphous coating in 3.5% NaCl solution [J]. Int. J. Hydrogen Energy, 2022, 47: 6911
|
[35] |
Yu L S, Tang J L, Wang H, et al. Corrosion behavior of bulk (Zr58Nb3Cu16Ni13Al10)100- x Y x (x = 0, 0.5, 2.5 at.%) metallic glasses in sulfuric acid [J]. Corros. Sci., 2019, 150: 42
|
[36] |
Gebert A, Buchholz K, Leonhard A, et al. Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses [J]. Mater. Sci. Eng., 1999, 267A: 294
|
[37] |
Cheng Q D, Wang Y H. Effect of surface scratches on corrosion behavior of 304 stainless steel beneath droplets of solution (0.5 mol/L NaCl + 0.25 mol/L MgCl2) [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 99
|
[37] |
程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 99
doi: 10.11902/1005.4537.2020.281
|
[38] |
Ji K Q, Li G F, Zhao L. Pitting behavior of two stainless steels in simulated heavy water reactor primary solution and 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 653
|
[38] |
纪开强, 李光福, 赵 亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 653
doi: 10.11902/1005.4537.2020.252
|
[39] |
Duang T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
|
[39] |
段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
doi: 10.11902/1005.4537.2022.102
|
[40] |
Li Y, Xu J. Differences in pitting growth kinetics between Zr60Ni25Al15 and Zr60Cu25Al15 Metallic glasses exposed to a 0.6 M NaCl aqueous solution [J]. Corros. Sci., 2017, 128: 73
|
[41] |
Lu H B, Zhang L C, Gebert A, et al. Pitting corrosion of Cu-Zr metallic glasses in hydrochloric acid solutions [J]. J. Alloy. Compd., 2008, 462: 60
|
[42] |
Zhang H R, Wu H Y, Wang S L, et al. Pitting behavior of Fe-based amorphous alloy with sulfide inclusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 477
|
[42] |
张浩然, 吴鸿燕, 王善林 等. 含硫化物夹杂的铁基非晶合金点蚀规律 [J]. 中国腐蚀与防护学报, 2021, 41: 477
doi: 10.11902/1005.4537.2020.148
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|