Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 949-956     CSTR: 32134.14.1005.4537.2023.297      DOI: 10.11902/1005.4537.2023.297
  研究报告 本期目录 | 过刊浏览 |
锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究
马晓伟1, 薛荣洁1(), 王涛涛1, 杨亮1, 刘珍光2
1.江苏理工学院材料工程学院 常州 213001
2.江苏科技大学材料科学与工程学院 镇江 212100
Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater
MA Xiaowei1, XUE Rongjie1(), WANG Taotao1, YANG Liang1, LIU Zhenguang2
1. School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China
2. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
引用本文:

马晓伟, 薛荣洁, 王涛涛, 杨亮, 刘珍光. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
Xiaowei MA, Rongjie XUE, Taotao WANG, Liang YANG, Zhenguang LIU. Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 949-956.

全文: PDF(5712 KB)   HTML
摘要: 

采用X射线衍射仪(XRD)和差示量热扫描分析仪(DSC)对锆基非晶合金进行结构和热力学性能表征;采用动电位极化曲线及电化学阻抗谱研究锆基非晶合金和传统金属合金(304不锈钢、6082铝合金)在3.5%NaCl溶液和模拟海水溶液中的电化学行为;采用扫描电镜(SEM)观察腐蚀后试样的表面形貌,并利用能谱仪(EDS)分析非晶合金腐蚀后表面元素的变化。结果表明:4种金属合金在腐蚀溶液中均发生点蚀现象,非晶合金表现出更加优异的耐腐蚀性能。相较于在3.5%NaCl溶液中的极化曲线,非晶合金和传统合金在模拟海水溶液中的极化曲线均发生负移,归因于海水中溶有大量的氯化物和硫酸盐。相较于传统合金,非晶合金表面形成的钝化膜表现的更加稳定。

关键词 非晶合金电化学模拟海水耐腐蚀性    
Abstract

The structure and thermal property of Zr-based amorphous alloys Zr41.2Ti13.8Cu12.5Ni10Be22.5(Vit1) and Zr55Cu30Al10Ni5(Zr55) were determined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The electrochemical behavior of two Zr-based amorphous alloys and two traditional metal alloys (304 stainless steel and 6082 Al-alloy) in 3.5%NaCl and simulated seawater solution were comparatively assessed via electrochemical workstation, scanning electron microscope (SEM) and energy dispersive spectroscope (EDS). The results show that the four metallic alloys present pitting corrosion, but the amorphous alloys show higher corrosion resistance. Tacking the polarization curves aquired in 3.5%NaCl solution as comparison, it follows that the polarization curves of amorphous alloys and conventional alloys in the simulated seawater showed negative shift, which was attributed to the large amount of sulfate and chloride dissolved in the simulated seawater. Compared to the traditional metallic alloys, the passive film formed on the surface of amorphous alloys is more stable.

Key wordsamorphous alloy    electrochemical    simulated seawater    corrosion resistance
收稿日期: 2023-09-18      32134.14.1005.4537.2023.297
ZTFLH:  TG172.5  
基金资助:国家自然科学基金(51801083)
通讯作者: 薛荣洁,E-mail: xuerongjie@jsut.edu.cn,研究方向为非晶合金和高熵合金
Corresponding author: XUE Rongjie, E-mail: xuerongjie@jsut.edu.cn
作者简介: 马晓伟,男,1997年生,硕士生
MaterialSiMnCrNiZnMgCuCTiMoPFeAl
304 stainless steel0.2061.27216.8277.792--0.1900.0560.2480.0750.014Bal.-
6082 Al-alloy1.0400.6170.1300.0070.0300.7200.046-0.020--0.270Bal.
表1  304不锈钢和6082铝合金化学成分 (mass fraction / %)
图1  非晶合金的 XRD 图谱(插图为 DSC 曲线)
图2  4种合金在3.5%NaCl溶液和模拟海水中的动电位极化曲线
SampleMaterialEcorr / mVIcorr / A·cm-2Epit / mV
3.5%NaClVit 1-3152.8 × 10-8-148
Zr55 alloy-3182.7 × 10-7-145
304 stainless steel-3318.1 × 10-7-101
6082 Al-alloy-7881.0 × 10-6-658
Seawater solutionVit1-3217.6 × 10-8-79
Zr55 alloy-3553.0 × 10-7-121
304 stainless steel-3711.3 × 10-6-127
6082 Al-alloy-8702.3 × 10-6-740
表2  4种合金极化曲线拟合电化学参数
图3  腐蚀溶液中拟合EIS的等效电路
SampleMatericalRs / kΩ·cm2Q / kΩ·cm-2·s-nnRct / kΩ·cm2
3.5%NaClVit 10.1079.792 × 10-80.90180874.190
Zr55 alloy0.0111.067 × 10-80.89562470.470
304 stainless steel0.0122.172 × 10-80.90786336.580
6082 Al-alloy0.0131.195 × 10-80.8408426.802
Seawater solutionVit 10.0279.672 × 10-80.90435836.040
Zr55 alloy0.0301.192 × 10-80.91683306.570
304 stainless steel0.0385.104 × 10-80.72693200.110
6082 Al-alloy0.0123.981 × 10-80.7912012.586
表3  4种合金EIS拟合结果
图4  4种合金在3.5%NaCl溶液和模拟海水中的电化学阻抗谱图谱
图5  4种合金动电位极化后的表面形貌
图6  非晶合金动电位极化后的表面形貌及能谱分析
[1] Wang H R, Wu J H, Wang J T, et al. Study on the corrosion & electrochemical properties of alloy AA5083 and the effect of active chlorine in seawater [J]. Electrochemistry, 2003, 9: 60
[1] 王洪仁, 吴建华, 王均涛 等. 5083铝合金在海水中的腐蚀电化学行为及活性氯影响研究 [J]. 电化学, 2003, 9: 60
[2] Wang W H. Development and implication of amorphous alloys [J]. Bull. Chin. Acad. Sci., 2022, 37: 352
[2] 汪卫华. 非晶合金材料发展趋势及启示 [J]. 中国科学院院刊, 2022, 37: 352
[3] Slobodyan M. Dissimilar welding and brazing of zirconium and its alloys: methods, parameters, metallurgy and properties of joints [J]. J. Manuf. Process., 2022, 75: 928
[4] Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, 44R: 45
[5] Kennedy D, Norman C. What don’t we know? [J]. Science, 2005, 309: 75
pmid: 15994521
[6] Xue R J, Zhao L Z, Yi J J. Strain aging in metallic glasses [J]. Mater. Lett., 2022, 306: 130931
[7] Khonik V A. Amorphous physics and materials: interstitialcy theory of condensed matter states and its application to non-crystalline metallic materials [J]. Chin. Phys., 2017, 26B: 016401
[8] Xue R J, Zhao L Z, Cai Y Q, et al. Correlation between boson peak and thermal expansion manifested by physical aging and high pressure [J]. Sci. China Phys. Mech. Astron., 2022, 65: 246111
[9] Liens A, Ter-Ovanessian B, Courtois N, et al. Effect of alloying elements on the microstructure and corrosion behavior of TiZr-based bulk metallic glasses [J]. Corros. Sci., 2020, 177: 108854
[10] Jiang J, Wang Z B, Pang S J, et al. Oxygen impurity improving corrosion resistance of a Zr-based bulk metallic glass in 3.5 wt% NaCl solution [J]. Corros. Sci., 2021, 192: 109867
[11] Wang D P, Wang S L, Wang J Q. Relationship between amorphous structure and corrosion behaviour in a Zr–Ni metallic glass [J]. Corros. Sci., 2012, 59: 88
[12] Sun B A, Wang W H. The fracture of bulk metallic glasses [J]. Prog. Mater. Sci., 2015, 74: 211
[13] Xie S H, Kruzic J J. Cold rolling improves the fracture toughness of a Zr-based bulk metallic glass [J]. J. Alloy. Compd., 2017, 694: 1109
[14] Chieh T C, Chu J, Liu C T, et al. Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions [J]. Mater. Lett., 2003, 57: 3022
[15] Wang Y F, Si J J, Si Y D, et al. Preparation and electrochemical corrosion performances of Zr-Ti-Ni-Cu-Be high-entropy bulk metallic glasses [J]. Mater. Sci. Eng., 2023, 289B: 116267
[16] Qin X J. Corrosion resistance of Zr41.5Ti14Cu13Ni10Be22.5 bulk amorphous alloy [J]. Corros. Sci. Prot. Technol., 2003, 15: 52
[16] 秦秀娟. Zr41.5Ti14Cu13Ni10Be22.5大块非晶的耐蚀性能 [J]. 腐蚀科学与防护技术, 2003, 15: 52
[17] Gebert A, Mummert K, Eckert J, et al. Electrochemical investigations on the bulk glass forming Zr55Cu30Al10Ni5 alloy [J]. Mater. Corros., 1997, 48: 293
[18] Mudali U K, Scudino S, Kühn U, et al. Polarisation behaviour of the Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 alloy in different microstructural states in acid solutions [J]. Scr. Mater., 2004, 50: 1379
[19] Wang B, Xu K K, Shi X H, et al. Electrochemical and chemical corrosion behaviors of the in-situ Zr-based metallic glass matrix composites in chloride-containing solutions [J]. J. Alloy. Compd., 2019, 770: 679
doi: 10.1016/j.jallcom.2018.08.174
[20] Wiest A, Wang G Y, Huang L, et al. Corrosion and corrosion fatigue of Vitreloy glasses containing low fractions of late transition metals [J]. Scr. Mater., 2010, 62: 540
[21] Shi H Q, Zhao W B, Wei X W, et al. Effect of Ti addition on mechanical properties and corrosion resistance of Ni-free Zr-based bulk metallic glasses for potential biomedical applications [J]. J. Alloy. Compd., 2020, 815: 152636
[22] Gan Y Y, Liu H, Li G, et al. Effect of Ni on corrosion behavior of Zr-Cu-Al amorphous alloys in NaCl solution [J]. Rare Met. Mater. Eng., 2022, 51: 712
[22] 甘有祎, 刘 昊, 李 广 等. Ni对Zr-Cu-Al系非晶合金在NaCl溶液中耐腐蚀性能的影响 [J]. 稀有金属材料与工程, 2022, 51: 712
[23] Cao Q P, Peng S, Zhao X N, et al. Effect of Nb substitution for Cu on glass formation and corrosion behavior of Zr-Cu-Ag-Al-Be bulk metallic glass [J]. J. Alloy. Compd., 2016, 683: 22
[24] Yang L, Zhang H R, Zhang S, et al. Effect of Cu content on the corrosion behavior of Ti-based bulk amorphous alloys in HCl solution [J]. Mater. Lett., 2023, 337: 133742
[25] Qiu Z W J, Li Z K, Fu H M, et al. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46: 33
doi: 10.1016/j.jmst.2019.10.043
[26] Tauseef A, Tariq N H, Akhter J I, et al. Corrosion behavior of Zr-Cu-Ni-Al bulk metallic glasses in chloride medium [J]. J. Alloy. Compd., 2010, 489: 596
[27] Wang D P, Li X, Chen Z. et al. Susceptibility of chloride ion concentration, temperature, and surface roughness on pitting corrosion of CoCrFeNi medium-entropy alloy [J]. Mater. Corros., 2022, 73: 106
[28] Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
[28] 刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
doi: 10.11902/1005.4537.2020.184
[29] Yan Z, Zhang C Y, Wang L X, et al. Effect of structural stability on electrochemical corrosion properties of Zr-based amorphous alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 79
[29] 阎 竹, 张晨阳, 王立新 等. 结构稳定性对Zr基非晶合金电化学腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 79
[30] Dai C D, Fu Y, Guo J X, et al. Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering [J]. Int. J. Min. Met. Mater., 2020, 27: 1388
[31] Ares A E, Gassa L M. Corrosion susceptibility of Zn-Al alloys with different grains and dendritic microstructures in NaCl solutions [J]. Corros. Sci., 2012, 59: 290
[32] Wang Y M, Yang Y H, Qu J L, et al. Effect of oxide layer on the electrochemical corrosion behavior of a Ni-based superalloy in 3.5 wt% NaCl [J]. Int. J. Electrochem. Sc., 2023, 18: 100310
[33] Ribeiro D V, Abrantes J C C, et al. Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach [J]. Constr. Build. Mater., 2016, 111: 98
[34] Kong W C, Li K M, Hu J. Immersion corrosion behavior, electrochemical performance and corrosion mechanism of subsonic flame sprayed FeCoCrMoSi amorphous coating in 3.5% NaCl solution [J]. Int. J. Hydrogen Energy, 2022, 47: 6911
[35] Yu L S, Tang J L, Wang H, et al. Corrosion behavior of bulk (Zr58Nb3Cu16Ni13Al10)100- x Y x (x = 0, 0.5, 2.5 at.%) metallic glasses in sulfuric acid [J]. Corros. Sci., 2019, 150: 42
[36] Gebert A, Buchholz K, Leonhard A, et al. Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses [J]. Mater. Sci. Eng., 1999, 267A: 294
[37] Cheng Q D, Wang Y H. Effect of surface scratches on corrosion behavior of 304 stainless steel beneath droplets of solution (0.5 mol/L NaCl + 0.25 mol/L MgCl2) [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 99
[37] 程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 99
doi: 10.11902/1005.4537.2020.281
[38] Ji K Q, Li G F, Zhao L. Pitting behavior of two stainless steels in simulated heavy water reactor primary solution and 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 653
[38] 纪开强, 李光福, 赵 亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 653
doi: 10.11902/1005.4537.2020.252
[39] Duang T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
[39] 段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
doi: 10.11902/1005.4537.2022.102
[40] Li Y, Xu J. Differences in pitting growth kinetics between Zr60Ni25Al15 and Zr60Cu25Al15 Metallic glasses exposed to a 0.6 M NaCl aqueous solution [J]. Corros. Sci., 2017, 128: 73
[41] Lu H B, Zhang L C, Gebert A, et al. Pitting corrosion of Cu-Zr metallic glasses in hydrochloric acid solutions [J]. J. Alloy. Compd., 2008, 462: 60
[42] Zhang H R, Wu H Y, Wang S L, et al. Pitting behavior of Fe-based amorphous alloy with sulfide inclusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 477
[42] 张浩然, 吴鸿燕, 王善林 等. 含硫化物夹杂的铁基非晶合金点蚀规律 [J]. 中国腐蚀与防护学报, 2021, 41: 477
doi: 10.11902/1005.4537.2020.148
[1] 王博, 安士忠, 郭俊卿, 纪运广, 李志强. 商用MB1MB8镁合金在NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2024, 44(4): 1073-1080.
[2] 彭文山, 邢少华, 钱峣, 蔺存国, 侯健, 张大磊. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[3] 林一, 刘涛, 郭彦兵, 阮晴, 郭章伟, 董丽华. 船用低温钢焊接材料的研发与腐蚀方法评价[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[4] 杜广, 芦国强, 邓龙辉, 蒋佳宁, 曹学强. 铝含量对镍铝合金在稀硫酸溶液中的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.
[5] 刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[6] 戴威, 刘园园, 涂闻芮, 孙阳庭, 李劲, 蒋益明. 外加电位下Ag/Sn电偶的腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.
[7] 黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
[8] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[9] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[10] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[11] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[12] 邓双九, 李昌, 余梦辉, 韩兴. IN625激光熔覆层腐蚀致微裂纹扩展机理研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[13] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[14] 龙武剑, 唐杰, 罗启灵, 丘章鸿, 王海龙. 生物质碳点对Q235钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[15] 李文杰, 车晓钰, 唐永存, 刘光明, 田文明, 何华林, 刘晨辉. 塑性变形加工对纯锌在天津土壤浸出液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.