|
|
耐候钢热轧氧化皮对快速稳定化锈层演变规律及耐蚀性影响 |
张佳伟1, 黄峰1( ), 汪涵敏1, 郎丰军2, 袁玮1, 刘静1 |
1.武汉科技大学 省部共建耐火材料与冶金国家重点实验室 湖北省海洋工程材料及服役安全工程技术研究中心 武汉 430081 2.宝钢股份中央研究院武钢有限技术中心 武汉 430080 |
|
Effect of Rolling Scale on Evolution of Fast-stabilized Rust Layer and Corrosion Resistance of a Weathering Steel |
ZHANG Jiawei1, HUANG Feng1( ), WANG Hanmin1, LANG Fengjun2, YUAN Wei1, LIU Jing1 |
1. Hubei Engineering Technology Research Center of Marine Materials and Service Safety, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China 2. R&D Center of Wuhan Iron & Steel Co., Ltd., Baosteel Central Research Institute, Wuhan 430080, China |
引用本文:
张佳伟, 黄峰, 汪涵敏, 郎丰军, 袁玮, 刘静. 耐候钢热轧氧化皮对快速稳定化锈层演变规律及耐蚀性影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 891-900.
Jiawei ZHANG,
Feng HUANG,
Hanmin WANG,
Fengjun LANG,
Wei YUAN,
Jing LIU.
Effect of Rolling Scale on Evolution of Fast-stabilized Rust Layer and Corrosion Resistance of a Weathering Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 891-900.
[1] |
Lin P F, Yang Z M, Chen Y, et al. Development of a Cr series surface rust layer stabilizer of weather resistant steels [J]. Corros. Prot., 2023, 44(3): 39
|
[1] |
林鹏飞, 杨忠民, 陈 颖 等. 一种Cr系耐候钢表面锈层稳定剂的研发 [J]. 腐蚀与防护, 2023, 44(3): 39
|
[2] |
Shi J, Hu X W, He B, et al. Surface stabilization and rust structure of weathering steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 856
|
[2] |
石 践, 胡学文, 何 博 等. 耐候钢表面稳定化处理及锈层结构研究 [J]. 中国腐蚀与防护学报, 2022, 42: 856
|
[3] |
Morcillo M, Díaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
|
[4] |
Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corros. Sci., 1999, 41: 1687
|
[5] |
Shi Z J, Wang L, Chen N, et al. Research status and development on surface rust layer and stabilizing treatment of weathering steels [J]. Corros. Sci. Prot. Technol., 2015, 27: 503
|
[5] |
石振家, 王 雷, 陈 楠 等. 耐候钢表面锈层及其稳定化处理现状与发展趋势 [J]. 腐蚀科学与防护技术, 2015, 27: 503
doi: 10.11903/1002.6495.2014.363
|
[6] |
Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690 MPa grade high strength bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
|
[6] |
刘海霞, 黄 峰, 袁 玮 等. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
doi: 10.11902/1005.4537.2020.002
|
[7] |
Wang H M, Huang F, Yuan W, et al. Corrosion behavior of a novel Cu-Mo weathering steel in an artificial marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 507
|
[7] |
汪涵敏, 黄 峰, 袁 玮 等. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 507
doi: 10.11902/1005.4537.2022.170
|
[8] |
Liu T, Wang S M, Hou Y B, et al. Research status on surface rust layer stabilization of weathering steel [J]. Surf. Technol., 2018, 47(10): 240
|
[8] |
刘 涛, 王胜民, 侯云波 等. 耐候钢表面锈层稳定化研究现状 [J]. 表面技术, 2018, 47(10): 240
|
[9] |
Zhong B, Xu X L, Chen Y Q, et al. Electrochemical impedance spectrum for corrosion of a weathering steel 09CuPCrNi-A in 3.5% NaCl solution [J]. Corros. Sci. Prot. Technol., 2011, 23: 437
|
[9] |
钟 彬, 徐小连, 陈义庆 等. 09CuPCrNi-A耐大气腐蚀钢电化学阻抗研究 [J]. 腐蚀科学与防护技术, 2011, 23: 437
|
[10] |
Wang C S, Zhang J W, Duan L, et al. Research progress and engineering application of long lasting high performance weathering steel bridges [J]. J. Traffic Transp. Eng., 2020, 20(1): 1
|
[10] |
王春生, 张静雯, 段 兰 等. 长寿命高性能耐候钢桥研究进展与工程应用 [J]. 交通运输工程学报, 2020, 20(1): 1
|
[11] |
Lin P F, Yang Z M, Chen Y, et al. Rust layer of weathering steel and its stabilization treatment status [J]. Iron Steel, 2021, 56(3): 58
|
[11] |
林鹏飞, 杨忠民, 陈 颖 等. 耐候钢锈层及其稳定化处理现状 [J]. 钢铁, 2021, 56(3): 58
|
[12] |
Chen X P, Wang X D, Liu Q Y, et al. Anti-corrosion mechanism of rust layers with atmospheric corrosion resistance [J]. Corros. Prot., 2009, 30: 241
|
[12] |
陈小平, 王向东, 刘清友 等. 耐候锈层的耐腐蚀机理研究 [J]. 腐蚀与防护, 2009, 30: 241
|
[13] |
Gao L J, Yang J W, Yu D Y, et al. A new rust stabilization treatment of weathering steel and its periodic immersed corrosion resistance in 3.5% NaCl solution [J]. Surf. Technol., 2017, 46(8): 234
|
[13] |
高立军, 杨建炜, 于东云 等. 耐候钢新型表面锈层稳定剂处理及其耐3.5%NaCl溶液周浸腐蚀性能 [J]. 表面技术, 2017, 46(8): 234
|
[14] |
Liu T. Study on stabilization of rust layer on weathering steel surface and treatment fluid [D]. Kunming: Kunming University of Science and Technology, 2019
|
[14] |
刘 涛. 耐候钢表面锈层稳定化及处理液的研究 [D]. 昆明: 昆明理工大学, 2019
|
[15] |
Liu L H, Li M, Li X G, et al. A new coating stabilizing surface rust of weathering steel [J]. Acta Metal. Sin., 2004, 40: 1195
|
[15] |
刘丽宏, 李 明, 李晓刚 等. 耐候钢表面锈层稳定化处理用新型涂层研究 [J]. 金属学报, 2004, 40: 1195
|
[16] |
Zhang X, Yang S W, Zhang W H, et al. Corrosion behavior of low-alloy weathering steel in cyclically alternate corrosion environment [J]. Chin. J. Mater Res., 2013, 27: 18
|
[16] |
张 旭, 杨善武, 张文华 等. 低合金耐候钢在周期性交替条件下的腐蚀行为 [J]. 材料研究学报, 2013, 27: 18
|
[17] |
Liu H, Yang S W, Zhang X, et al. Influence of surface pre-treatment on corrosion behavior of weathering steel [J]. Trans. Mater. Heat Treat., 2015, 36(5): 178
|
[17] |
刘 弘, 杨善武, 张 旭 等. 耐候钢表面预处理对其腐蚀行为的影响 [J]. 材料热处理学报, 2015, 36(5): 178
|
[18] |
Yang Y. Corrosion mechanism of Sn/Sb-microalloyed 420MPa low-alloy steels in polluted marine atmosphere [D]. Beijing: University of Science and Technology Beijing, 2021
|
[18] |
杨 颖. 锡和锑对污染海洋大气中420MPa低合金钢腐蚀的影响机理研究 [D]. 北京: 北京科技大学, 2021
|
[19] |
Qin J Z. Effect of deformation and oxygen content on FeO eutectoid reaction of oxide scale on high strength steel surface [D]. Wuhan: Wuhan University of Science and Technology, 2022
|
[19] |
秦金柱. 形变及氧含量对高强钢表面氧化铁皮层FeO共析反应的影响 [D]. 武汉: 武汉科技大学, 2022
|
[20] |
Díaz I, Cano H, Lopesino P, et al. Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments [J]. Corros. Sci., 2018, 141: 146
|
[21] |
Nishikata A, Zhu Q J, Tada E. Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method [J]. Corros. Sci., 2014, 87: 80
|
[22] |
Liu H X. Study on effect of Si element on corrosion mechanism and atmospheric corrosion of 690MPa grade bridge steel [D]. Wuhan: Wuhan University of Science and Technology, 2020
|
[22] |
刘海霞. Si元素对690MPa级桥梁钢耐蚀性作用机理及大气腐蚀行为研究 [D]. 武汉: 武汉科技大学, 2020
|
[23] |
Zhang Y W. A study on corrosion behavior of Q345q bridge steel in typical atmospheric environment in northwest China [D]. Lanzhou: Lanzhou University of Technology, 2019
|
[23] |
张延文. 桥梁钢Q345q在西北典型大气环境中的腐蚀行为研究 [D]. 兰州: 兰州理工大学, 2019
|
[24] |
Cheng P, Liu J, Huang X Q, et al. Effect of silicon on the corrosion behaviour of 690 MPa weathering bridge steel in simulated industrial atmosphere [J]. Constr. Build. Mater., 2022, 328: 127030
|
[25] |
Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
|
[26] |
Chen Y X. Effect of Cr on high humid and warm marine atmospheric corrosion resistance of weathering steel [D]. Beijing: China University of Petroleum, 2017
|
[26] |
陈钰鑫. Cr对耐候钢在高湿热海洋大气环境下耐蚀性的影响规律 [D]. 北京: 中国石油大学(北京), 2017
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|