Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 1011-1021     CSTR: 32134.14.1005.4537.2024.041      DOI: 10.11902/1005.4537.2024.041
  轻质合金腐蚀与防护专栏 本期目录 | 过刊浏览 |
铝含量对镍铝合金在稀硫酸溶液中的腐蚀行为影响
杜广1, 芦国强2, 邓龙辉1, 蒋佳宁1, 曹学强1()
1.武汉理工大学 硅酸盐建筑材料国家重点实验室 武汉 430070
2.中国航发沈阳黎明航空发动机有限责任公司 沈阳 110043
Effect of Aluminum Content on Corrosion Behavior of Ni-Al Alloys in Dilute Sulfuric Acid Solution
DU Guang1, LU Guoqiang2, DENG Longhui1, JIANG Jianing1, CAO Xueqiang1()
1. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
2. AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang 110043, China
引用本文:

杜广, 芦国强, 邓龙辉, 蒋佳宁, 曹学强. 铝含量对镍铝合金在稀硫酸溶液中的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.
Guang DU, Guoqiang LU, Longhui DENG, Jianing JIANG, Xueqiang CAO. Effect of Aluminum Content on Corrosion Behavior of Ni-Al Alloys in Dilute Sulfuric Acid Solution[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1011-1021.

全文: PDF(19540 KB)   HTML
摘要: 

镍基高温合金(NiCrAlY)常用于航空发动机的热端部件。热端部件如燃烧室、导向叶片和动叶片需要热障涂层(TBCs)保护。TBCs由抗氧化的金属粘结层(BC)和起隔热作用的陶瓷层(TC)组成。BC材料也是NiCrAlY合金,其Al和Cr含量比NiCrAlY基体高许多,导致BC的腐蚀电位比基体低53 mV,BC发生电偶腐蚀。本文采用了不同Al含量的NiAl合金,研究Al含量对NiAl合金在稀H2SO4中腐蚀行为的影响。研究表明,Ni95Al5的腐蚀电位最高,腐蚀电流密度最小;Ni75Al25腐蚀电位较低。研究证明,BC中Al含量高是导致BC在自然环境下发生腐蚀的原因。

关键词 NiAl合金稀硫酸电化学行为腐蚀产物    
Abstract

Ni-based high-temperature alloys (NiCrAlY) are commonly used in the hot sections of aerospace engines. Hot section components such as combustion chambers, guide vanes, and turbine blades require thermal barrier coatings (TBCs) for protection. TBCs consist of an oxidation-resistant metal bond coat (BC) and a ceramic top coat (TC) that provides thermal insulation. The BC material is also NiCrAlY alloy, with Al and Cr content higher than the substrate Ni-based high-temperature alloys, leading to a 53 mV lower corrosion potential for BC compared to the substrate, therefore, resulting in galvanic couple with the BC. Herein, the influence of different Al contents in NiAl alloys on their corrosion behavior in dilute H2SO4, simulating the corrosive environment was studied. The result reveals that Ni95Al5 exhibits the highest corrosion potential and the lowest corrosion current density, while Ni75Al25 has a lower corrosion potential. The research demonstrates that a high Al content in the BC is the primary cause of corrosion in conditions of natural environment.

Key wordsNiAl alloy    dilute sulfuric acid    electrochemical behavior    corrosion product
收稿日期: 2024-01-30      32134.14.1005.4537.2024.041
ZTFLH:  O646.6  
基金资助:国家自然科学基金(92060201)
通讯作者: 曹学强,E-mail: xcao@whut.edu.cn,研究方向为热防护涂层
Corresponding author: CAO Xueqiang, E-mail: xcao@whut.edu.cn
作者简介: 杜 广,男,1999年生,硕士生
图1  真空熔炼制备的4种Ni-Al合金SEM背散射电子像
ElementACE1E2F
Al28.4315.3614.3925.196.09
Ni71.5784.6485.6174.8193.91
表1  图1中不同区域的化学组成 (molar fraction / %)
图2  真空熔炼制备样品的XRD谱
图3  4种合金样品的动电位极化曲线
Sample

Ecorr

mV

Icorr

µA·cm-2

ba

mV·dec-1

bc

mV·dec-1

Ni75Al25-0.21111.8838.65128.96
Ni80Al20-0.22337.347.79126.09
Ni85Al15-0.22413.7247.4142.41
Ni95Al5-0.1729.2535.57139.12
表2  4种合金样品极化曲线拟合参数
图4  4种Ni-Al合金样品极化测试后的表面形貌
ElementABCDEF
O7.967.348.2514.8112.5213.28
Al23.3324.2713.8020.0010.265.56
S0.680.550.360.821.080.86
Ni68.0367.8477.5964.3676.1480.30
表3  图4中不同点区域的化学成分 (molar fraction / %)
图5  4种Ni-Al合金样品48 h线性极化电阻测试后的表面形貌
ElementABCDEFG
Ni70.1779.4869.3578.1066.7191.430.98
Al25.1513.8625.3913.5111.755.4131.12
O4.686.665.278.3921.553.1667.90
表4  图5中不同区域的平均化学成分 (molar fraction / %)
图6  4种Ni-Al合金样品在1 mol/L H2SO4溶液中浸泡48 h之后的XPS谱
图7  4种Ni-Al合金样品腐蚀不同时间后的电化学阻抗谱
图8  EIS拟合中采用的等效电路模型
图9  4种Ni-Al合金的Eocp和Icorr随浸泡时间的变化曲线
[1] Zhao Y S, Zhang M, Dai J W, et al. Research progress of thermal barrier coatings for aeroengine turbine blades [J]. Mater. Rep., 2023, 37(6): 21040168
[1] 赵云松, 张 迈, 戴建伟 等. 航空发动机涡轮叶片热障涂层研究进展 [J]. 材料导报, 2023, 37(6): 21040168
[2] Darolia R. NiAl alloys for high-temperature structural applications [J]. JOM, 1991, 43: 44
[3] Stoloff N S, Liu C T, Deevi S C. Emerging applications of intermetallics [J]. Intermetallics, 2000, 8: 1313
[4] Rajendran R. Gas turbine coatings-An overview [J]. Eng. Failure Anal., 2012, 26: 355
[5] Chen S D. Research progress on microstructure and preparation methods for MCrAlY bond coats [J]. Mater. Rep., 2019, 33(15): 2582
[5] 陈守东. MCrAlY粘结层的微观组织及制备方法研究进展 [J]. 材料导报, 2019, 33(15): 2582
[6] Chang Z D, Zhang J, Mou R D, et al. Phase structure and properties of a NiCrAlYSi bond coating alloy [J]. Vacuum, 2022, 59(4): 41
[6] 常振东, 张 婧, 牟仁德 等. NiCrAlYSi粘结层合金相结构与性能研究 [J]. 真空, 2022, 59(4): 41
[7] Cao Q, Yuan J Y, Wang J S, et al. Formation mechanism of corrosion spots on thermal barrier coatings [J]. Therm. Spray Technol., 2019, 11(1): 9
[7] 曹 沁, 袁洁燕, 王进双 等. 热障涂层表面腐蚀斑点的形成机理研究 [J]. 热喷涂技术, 2019, 11(1): 9
[8] Shen L, Xue J J. Development path choice and strategy framework of China's energy security [J]. China Popul. Resour. Environ., 2011, 21(10): 49
[8] 沈 镭, 薛静静. 中国能源安全的路径选择与战略框架 [J]. 中国人口·资源与环境, 2011, 21(10): 49
[9] Ding N. Analysis of harmful elements causing air pollution in coal [J]. China Stand., 2018, (18): 163
[9] 丁 宁. 煤炭中造成大气污染有害元素的分析 [J]. 中国标准化, 2018, (18): 163
[10] Chen X, Shan X R, Shi Z J, et al. Analysis of the spatio-temporal changes in acid rain and their causes in China (1998–2018) [J]. J. Resour. Ecol., 2021, 12: 593
[11] Zhang D, Xu R G, Zhao Y F, et al. Interannual variation characteristics of acid rain from 2006-2021 in China [J]. Environ. Pollut. Control, 2023, 45: 849
[11] 张 舵, 许瑞广, 赵一飞 等. 2006-2021年中国酸雨年际变化特征分析 [J]. 环境污染与防治, 2023, 45: 849
[12] Wen J, Cui H Z, Wei N, et al. Effect of phase composition and microstructure on the corrosion resistance of Ni-Al intermetallic compounds [J]. J. Alloy. Compd., 2017, 695: 2424
[13] Sefer B, Virtanen S. Electrochemical and corrosion study of as-cast Ni x Aly intermetallic alloys: Influence of alloy composition and electrolyte pH [J]. Corros. Sci., 2019, 154: 287
[14] Porcayo-Calderon J, Rodriguez-Diaz R A, Porcayo-Palafox E, et al. Effect of Cu addition on the electrochemical corrosion performance of Ni3Al in 1.0 M H2SO4 [J]. Adv. Mater. Sci. Eng., 2015, 2015: 209286
[15] Padilla E H, Flores A M, Ramírez C A, et al. Electrochemical corrosion characterization of nickel aluminides in acid rain [J]. Matéria (Rio de Janeiro), 2018, 23: 11998
[16] Huang W, Chang Y A. A thermodynamic analysis of the Ni-Al system [J]. Intermetallics, 1998, 6: 487
[17] Krasnowski M, Antolak A, Kulik T. Nanocrystalline Ni3Al alloy produced by mechanical alloying of nickel aluminides and hot-pressing consolidation [J]. J. Alloy. Compd., 2007, 434/435: 344
[18] Matsuura K, Kitamutra T, Kudoh M. Microstructure and mechanical properties of NiAl intermetallic compound synthesized by reactive sintering under pressure [J]. J. Mater. Process. Technol., 1997, 63: 298
[19] Biswas A, Roy S K, Gurumurthy K R, et al. A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode [J]. Acta Mater., 2002, 50: 757
[20] Hunziker O, Kurz W. Solidification microstructure maps in Ni-Al alloys [J]. Acta Mater., 1997, 45: 4981
[21] Kwabena Adomako N, Haghdadi N, Primig S. Electron and laser-based additive manufacturing of Ni-based superalloys: a review of heterogeneities in microstructure and mechanical properties [J]. Mater. Des., 2022, 223: 111245
[22] Aprajak, Jha P, Mohapatra S K, et al. A brief review of processing techniques for NiAl intermetallic composites [J]. Mater. Today Proc., 2023, 78: 560
[23] Shang Z, Shen J, Wang L, et al. Investigations on the microstructure and room temperature fracture toughness of directionally solidified NiAl-Cr(Mo) eutectic alloy [J]. Intermetallics, 2015, 57: 25
[24] Keddam M, Takenouti H, Yu N. Transpassive dissolution of Ni in acidic sulfate media: a kinetic model [J]. J. Electrochem. Soc., 1985, 132: 2561
[25] Ishwara Bhat J, Alva V D P. A study of aluminium corrosion inhibition in acid medium by an antiemitic drug [J]. Trans. Indian Inst. Met., 2011, 64: 377
[26] Prabhu D, Rao P. Garcinia indica as an environmentally safe corrosion inhibitor for aluminium in 0.5 M phosphoric acid [J]. Int. J. Corros., 2013, 2013: 945143
[27] Chen X N, Wang X H, Fang D. A review on C1s XPS-spectra for some kinds of carbon materials [J]. Fullerenes Nanotubes Carbon Nanostruct., 2020, 28: 1048
[28] Fang D, He F, Xie J L, et al. Calibration of binding energy positions with C1s for XPS results [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2020, 35: 711
[29] Mansour A N, Melendres C A. Characterization of α-Ni(OH)2 by XPS [J]. Surf. Sci. Spectra, 1994, 3: 255
[30] Bagus P S, Nelin C J, Brundle C R, et al. Main and satellite features in the Ni 2p XPS of NiO [J]. Inorg. Chem., 2022, 61: 18077
doi: 10.1021/acs.inorgchem.2c02549 pmid: 36321847
[31] Tian J, Xu L H, Sun W, et al. Use of Al2(SO4)3 and acidified water glass as mixture depressants in flotation separation of fluorite from calcite and celestite [J]. Miner. Eng., 2019, 137: 160
doi: 10.1016/j.mineng.2019.04.011
[32] Rotole J A, Sherwood P M A. Nordstrandite (Al(OH)3) by XPS [J]. Surf. Sci. Spectra, 1998, 5: 32
[33] Matthews D. The stern-geary and related methods for determining corrosion rates [J]. Aust. J. Chem., 1975, 28: 243
[34] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008
[34] 曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008
[35] Hoar T P. The study of cathodic reactions in metallic corrosion [J]. Trans. Electrochem. Soc., 1939, 76: 157
[36] Bockris J O M, Potter E C. The mechanism of hydrogen evolution at nickel cathodes in aqueous solutions [J]. J. Chem. Phys., 1952, 20: 614
[37] Sato N, Okamoto G. Kinetics of the anodic dissolution of nickel in sulfuric acid solutions [J]. J. Electrochem. Soc., 1964, 111: 897
[38] Barbosa M R, Real S G, Vilche J R, et al. Comparative potentiodynamic study of nickel in still and stirred sulfuric acid-potassium sulfate solutions in the 0.4-5.7 pH range [J]. J. Electrochem. Soc., 1988, 135: 1077
[39] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
[39] 曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002
[40] Rotole J A, Sherwood P M A. Corrundum (α-Al2O3) by XPS [J]. Surf. Sci. Spectra, 1998, 5: 11
[1] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[2] 张运军, 蒋有伟, 张忠义, 吕乃欣, 陈君伟, 连国锋. 3Cr合金钢在尿素辅助稠油蒸汽吞吐环境中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(2): 480-488.
[3] 冷文俊, 石西召, 辛永磊, 杨延格, 王利, 崔中雨, 侯健. 极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[4] 白雪寒, 丁康康, 张彭辉, 范林, 张慧霞, 刘少通. AH36船用钢海水加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[5] 何逸, 郑传波, 戚浩宇, 刘珍光. TP2紫铜在工业环境中腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 71-81.
[6] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[7] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[8] 周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[9] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[10] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[11] 李晗, 刘元海, 赵连红, 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[12] 王腾宇, 张正贵, 陆卫中, 吴希革. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938.
[13] 王小红, 李子硕, 唐御峰, 谭浩, 蒋焰罡. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
[14] 薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[15] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.