Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 755-764     CSTR: 32134.14.1005.4537.2023.213      DOI: 10.11902/1005.4537.2023.213
  研究报告 本期目录 | 过刊浏览 |
应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响
孙佳钰1,2, 彭文山2(), 邢少华2
1.中国石油乌鲁木齐石化公司研究院 乌鲁木齐 830019
2.中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护全国重点实验室 青岛 266237
Combined Effect of Stress and Dissolved Oxygen on Corrosion Behavior of Ni-Cr-Mo-V High Strength Steel
SUN Jiayu1,2, PENG Wenshan2(), XING Shaohua2
1. Institute for Research of Urumqi Petrochemical Company, Urumqi 830019, China
2. National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
引用本文:

孙佳钰, 彭文山, 邢少华. 应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 755-764.
Jiayu SUN, Wenshan PENG, Shaohua XING. Combined Effect of Stress and Dissolved Oxygen on Corrosion Behavior of Ni-Cr-Mo-V High Strength Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 755-764.

全文: PDF(23431 KB)   HTML
摘要: 

在实验室模拟环境中,通过四点弯曲装置向Ni-Cr-Mo-V高强钢施加不同应力,并结合电化学测试、腐蚀形貌和产物分析,研究了溶解氧与应力耦合对Ni-Cr-Mo-V高强钢在低温海水环境中腐蚀行为的影响及规律。结果表明:溶解氧含量的增加会加快Ni-Cr-Mo-V高强钢的腐蚀产物生成,施加外加应力会使应力集中部分的腐蚀情况进一步加剧;低温海水中溶解氧的增加,协同试样上所施加的应力,致使腐蚀产物层中的Cr、Ni减少,从而降低腐蚀产物层对基体的保护作用;当溶解氧含量和外加应力均增加时,会进一步使Ni-Cr-Mo-V高强钢发生伪钝化现象,导致其自腐蚀电流密度增大。在低温海水环境中,应力与溶解氧对Ni-Cr-Mo-V高强钢存在协同作用,促进Ni-Cr-Mo-V高强钢腐蚀反应的进行,致使该材料表面腐蚀情况加剧,腐蚀产物对基体的保护作用下降。

关键词 低温海水高强钢溶氧量应力腐蚀    
Abstract

In fact, Ni-Cr-Mo-V high strength steel is widely used as engineering structure material of ships- and equipment-building for the exploration of polar resources. However, high strength steel will suffer from corrosion in low temperature seawater environment. In case when the structure component of Ni-Cr-Mo-V high strength steel is subjected simultaneously to stress and corrosive seawater in this polar low temperature environment, its corrosion failure probability will be greatly aggravated. Therefore, it is of significance to clarify the service performance of Ni-Cr-Mo-V high strength steel in this environment. As thus, the corrosion behavior evolution of the steel in simulated low temperature seawaters with variation of dissolved oxygen contents was assessed in lab, while a four-point bending device was adopted as a means of applying stress on the testing steel. Results show that while a stress was applied on the test steel through banding in low temperature seawater, the increase of dissolved oxygen content will accelerate the formation of corrosion products on Ni-Cr-Mo-V high strength steel; correspondingly, Cr and Ni in the corrosion product layer decrease, which reduces the protective effect of the corrosion products layer on the substrate; when the dissolved oxygen content and the applied stress increase simultaneously, the Ni-Cr-Mo-V high strength steel will be further pseudo-passivated, resulting in an increase in its free-corrosion current density. It follows that in low temperature seawater environment, the applied stress and dissolved oxygen have a synergistic effect on the corrosion of Ni-Cr-Mo-V high strength steel, which promotes the corrosion reaction of Ni-Cr-Mo-V high strength steel, resulting in the aggravation of surface corrosion and the decrease of the protective effect of corrosion products on the steel substrate.

Key wordslow-temperature seawater    high strength steel    dissolved oxygen    stress    corrosion
收稿日期: 2023-07-06      32134.14.1005.4537.2023.213
ZTFLH:  TG172.5  
通讯作者: 彭文山,E-mail: pengwenshan1386@126.com,研究方向为海洋环境腐蚀、多相流冲蚀及腐蚀/冲蚀仿真
Corresponding author: PENG Wenshan, E-mail: pengwenshan1386@126.com
作者简介: 孙佳钰,女,1995年生,硕士,工程师
图1  施加不同应力的Ni-Cr-Mo-V高强钢在不同溶解氧的天然海水中浸泡5 d后的腐蚀宏观形貌
图2  施加不同应力的高强钢在含3.5 mg/L DO的天然海水中浸泡5 d后的微观形貌
图3  施加不同应力的高强钢在含4.5 mg/L DO天然海水中浸泡5 d后的微观形貌
图4  施加不同应力的高强钢在含5.5 mg/L DO天然海水中浸泡5 d后的微观形貌
图5  施加不同应力的高强钢在含6.5 mg/L DO天然海水中浸泡5 d的微观形貌
图6  高强钢在含不同浓度溶解氧的天然海水中浸泡5 d后三维点蚀形貌
ConditionONaMgSClKCaCrFeNi
3.5 mg/L-0% Rp0.236.19//0.993.04//0.4955.482.72
3.5 mg/L-100% Rp0.233.46//2.030.48//0.6960.511.56
4.5 mg/L-0% Rp0.234.84//0.331.27//0.5558.562.74
4.5 mg/L-100% Rp0.231.64//2.229.04//0.3454.261.14
5.5 mg/L-0% Rp0.231.50//1.449.93//0.3054.071.23
5.5 mg/L-100% Rp0.233.785.98/2.738.170.230.37/47.100.61
6.5 mg/L-0% Rp0.226.6619.381.251.0822.580.450.69/26.150.76
6.5 mg/L-100% Rp0.226.0518.130.631.3120.430.390.38/31.22/
表1  在不同应力作用下高强钢在含不同浓度溶解氧的天然海水中腐蚀产物的化学成分 (mass fraction / %)
图7  高强钢在含不同浓度DO的天然海水中浸泡5 d后的Nyquist图
图8  高强钢在含不同浓度DO的天然海水中浸泡5 d后的Rct值
图9  施加不同应力的高强钢在含DO的天然海水中浸泡5 d后的极化曲线
DO / mg·L-1Applied stressba / mV·dec-1bc / mV·dec-1Ecorr / VIcorr / A·cm-2

3.5

0%Rp0.257.67-295.99-0.643.58 × 10-6
50%Rp0.256.89-351.79-0.644.46 × 10-6
100%Rp0.257.56-396.83-0.635.11 × 10-6

4.5

0%Rp0.273.39-319.74-0.624.06 × 10-6
50%Rp0.273.92-452.67-0.615.62 × 10-6
100%Rp0.271.30-483.37-0.627.35 × 10-6

5.5

0%Rp0.275.64-369.07-0.635.07 × 10-6
50%Rp0.278.54-546.61-0.608.33 × 10-6
100%Rp0.279.05-724.49-0.579.91 × 10-6

6.5

0%Rp0.278.70-489.23-0.607.76 × 10-6
50%Rp0.274.75-771.37-0.569.48 × 10-6
100%Rp0.2108.52-1003.2-0.551.18 × 10-5
表2  高强钢在受拉应力作用下含DO的天然海水中浸泡5 d后的极化曲线拟合参数
图10  高强钢在受力作用下含不同浓度DO的天然海水中浸泡5 d后的极化曲线
1 Yu D W, Zhang D Y, Wu L, et al. Analysis of the influence of convection heat transfer in circular tubes on ships in a polar environment [J]. Atmosphere, 2022, 13: 149
doi: 10.3390/atmos13020149
2 Yang M. Research on China's participation in the polar and deep sea's governance [J]. Ocean Dev. Manag., 2022, 39(5): 58
2 杨 淼. 我国参与极地深海治理问题研究 [J]. 海洋开发与管理, 2022, 39(5): 58
3 Zhang W H, Zhao J, Gu H, et al. Current situations and development measures of equipment industry of Arctic oil and gas development in China [J]. Int. Petrol. Econ., 2021, 29(3): 33
3 张文昊, 赵 洁, 顾 洪 等. 中国极地油气资源开发装备产业现状及发展策略建议 [J]. 国际石油经济, 2021, 29(3): 33
4 Yu L W, Wang J R, Wang S Q. Development strategy for polar equipment in China [J]. Strat. Study CAE, 2020, 22(6): 84
4 于立伟, 王俊荣, 王树青. 我国极地装备技术发展战略研究 [J]. 中国工程科学, 2020, 22(6): 84
5 Xia H C, He J W, Deng S J. Welding procedure of FH40 low-temperature high-strength steel for polar ships [J]. Marine Technol., 2022, 50(3): 70
5 夏皓春, 贺进巍, 邓胜杰. 极地船用FH40低温高强钢焊接工艺 [J]. 造船技术, 2022, 50(3): 70
6 Zhang P, Wang X S, Long J, et al. Development and microstructure analysis of high strength steel plate used for polar icebreaker and polar transport ships [A]. The 28th International Ocean and Polar Engineering Conference [C]. Sapporo, 2018
7 Ye Q B, Liu Z Y, Wang G D. Development of cryogenic steel for polar ships [A]. Proceedings of the 10th China Steel Annual Conference and the 6th Baosteel Academic Annual Conference II [C]. Shanghai, 2015
7 叶其斌, 刘振宇, 王国栋. 极地船舶用低温钢发展 [A]. 第十届中国钢铁年会暨第六届宝钢学术年会论文集II [C]. 上海, 2015
8 Li F R. Distribution of oxygen-minimum layer and factors controlling on it in areas adjacent to South Shetlands and North of Adelaide, Antarctica, in Summer [J]. Antarct. Res., 1989, 1: 21
8 李福荣. 南设得兰群岛及阿得雷德岛以北海域夏季溶解氧含量最小层分布及其控制因素 [J]. 南极研究, 1989, 1: 21
9 McIntire G, Lippert J, Yudelson J. The effect of dissolved CO2 and O2 on the corrosion of iron [J]. Corrosion, 1990, 46: 91
doi: 10.5006/1.3585085
10 Su H Y, Wei S C, Liang Y, et al. Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel [J]. Chin. J. Eng., 2019, 41: 1029
10 苏宏艺, 魏世丞, 梁义 等. 静水压与溶解氧耦合作用对低合金高强钢腐蚀电化学行为的影响 [J]. 工程科学学报, 2019, 41: 1029
11 Zhang H X, Wang X D, Jia R L, et al. Investigation on stress corrosion cracking behavior of welded high strength low alloy steel in seawater containing various dissolved oxygen concentrations [J]. Int. J. Electrochem. Sci., 2013, 8: 1262
doi: 10.1016/S1452-3981(23)14096-X
12 Sun F L, Ren S, Li Z, et al. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments [J]. Mater. Sci. Eng., 2017, 685A: 145
13 Xue F, Wei X, Dong J H, et al. Effect of chloride ion on corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution with different dissolved oxygen concentrations [J]. J. Mater. Sci. Technol., 2019, 35: 596
14 Wan H X, Du C W, Liu Z Y, et al. The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment [J]. Ocean Eng., 2016, 114: 216
doi: 10.1016/j.oceaneng.2016.01.020
15 Lu Q K, Wang L W, Xin J C, et al. Corrosion evolution and stress corrosion cracking of E690 steel for marine construction in artificial seawater under potentiostatic anodic polarization [J]. Constr. Build. Mater., 2020, 238: 117763
doi: 10.1016/j.conbuildmat.2019.117763
16 Wu X, Mu F W, Gordon S, et al. Development of a numerical model for simulating stress corrosion cracking in spent nuclear fuel canisters [J]. npj Mater. Degrad., 2021, 5: 28
doi: 10.1038/s41529-021-00174-5
17 Lu H, Shen Z, Zhang L F, et al. Effects of dissolved oxygen and temperature on the stress corrosion of O6Cr17Ni12Mo2Ti stainless steel in supercritical water [J]. Chin. J. Eng., 2015, 37: 1456
17 陆 辉, 沈 朝, 张乐福 等. 溶解氧和温度对O6Cr17Ni12Mo2Ti不锈钢在超临界水中应力腐蚀的影响 [J]. 工程科学学报, 2015, 37: 1456
18 Qiu J, Li C J, Du M. Stress corrosion and cathodic protection of X80 pipeline steel weldment in acidic seawater [J]. Corros. Prot., 2014, 35: 357
18 邱 景, 李成杰, 杜 敏. X80管线钢焊接件在酸性海水中的应力腐蚀及阴极保护 [J]. 腐蚀与防护, 2014, 35: 357
19 Melchers R E. Pitting corrosion of mild steel in marine immersion environment-Part 2: Variability of maximum pit depth [J]. Corrosion, 2004, 60: 937
doi: 10.5006/1.3287827
20 Valor A, Rivas D, Caleyo F, et al. Discussion: statistical characterization of pitting corrosion—Part 1: data analysis and Part 2: probabilistic modeling for maximum pit depth [J]. Corrosion, 2007, 63: 107
doi: 10.5006/1.3281683
21 Liu Y W, Wang Z Y, Wei Y H. Influence of seawater on the carbon steel initial corrosion behavior [J]. Int. J. Electrochem. Sci., 2019, 14: 1147
doi: 10.20964/2019.02.36
22 Zhou Y L, Chen J, Xu Y, et al. Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl- containing environment [J]. J. Mater. Sci. Technol., 2013, 29: 168
doi: 10.1016/j.jmst.2012.12.013
23 Li H, Liu Y H, Zhao L H, et al. Corrosion behavior of 300M ultra high strength steel in simulated marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 87
23 李 晗, 刘元海, 赵连红 等. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 87
24 Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
24 万 晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851
25 Liu J, Li X B, Wang J. Effect of hydrostatic pressure on the corrosion behaviors of two low alloy steels [J]. Acta Metall. Sin., 2011, 47: 697
doi: 10.3724/SP.J.1037.2010.00705
25 刘 杰, 李相波, 王 佳. 模拟深海压力对2种低合金钢腐蚀行为的影响 [J]. 金属学报, 2011, 47: 697
26 Hamadou L, Kadri A, Benbrahim N. Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy [J]. Appl. Surf. Sci., 2005, 252: 1510
doi: 10.1016/j.apsusc.2005.02.135
27 Li W, Brown B, Young D, et al. Investigation of pseudo-passivation of mild steel in CO2 corrosion [J]. Corrosion, 2014, 70: 294
doi: 10.5006/0950
28 Lu Y F, Dong J H, Ke W. Corrosion evolution of low alloy steel in deaerated bicarbonate solutions [J]. J. Mater. Sci. Technol., 2015, 31: 1047
doi: 10.1016/j.jmst.2014.10.013
[1] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[2] 张照易, 周学杰, 陈昊, 吴军, 陈志飈, 陈志坚. CCSAQ235B钢在长江淡水环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 735-744.
[3] 张明, 龚宁, 张博, 霍宏博, 李浩男, 钟显康. 基于腐蚀预测和强度计算的油管服役寿命评估[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
[4] 解辉, 于超, 花靖, 蒋秀. NH+4浓度对N80钢在饱和CO2 的3%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
[5] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[6] 周龙, 鲁骏, 丁文珊, 李昊, 陶涛, 师超, 邵亚薇, 刘光明. 不同植酸盐对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.
[7] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[8] 丁昱智, 曹金鑫, 曹凤婷, 李涛, 陶建涛, 王铁钢, 杲广尧, 范其香. 基于风险的检验技术在石油炼化领域中的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 553-566.
[9] 胡琪, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. Inconel 718及其渗铝涂层在Na2SO4 + 5%NaCl混合盐膜下的热腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[10] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[11] 岑远遥, 廖光萌, 朱玉琴, 赵方超, 刘聪, 何建新, 周堃. 基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[12] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[13] 邓双九, 李昌, 余梦辉, 韩兴. IN625激光熔覆层腐蚀致微裂纹扩展机理研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[14] 徐佳新, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K452合金表面CVD渗铝涂层制备温度对其750℃硫酸盐热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.
[15] 戴威, 刘园园, 涂闻芮, 孙阳庭, 李劲, 蒋益明. 外加电位下Ag/Sn电偶的腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.