|
|
应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响 |
孙佳钰1,2, 彭文山2( ), 邢少华2 |
1.中国石油乌鲁木齐石化公司研究院 乌鲁木齐 830019 2.中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护全国重点实验室 青岛 266237 |
|
Combined Effect of Stress and Dissolved Oxygen on Corrosion Behavior of Ni-Cr-Mo-V High Strength Steel |
SUN Jiayu1,2, PENG Wenshan2( ), XING Shaohua2 |
1. Institute for Research of Urumqi Petrochemical Company, Urumqi 830019, China 2. National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China |
引用本文:
孙佳钰, 彭文山, 邢少华. 应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 755-764.
Jiayu SUN,
Wenshan PENG,
Shaohua XING.
Combined Effect of Stress and Dissolved Oxygen on Corrosion Behavior of Ni-Cr-Mo-V High Strength Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 755-764.
1 |
Yu D W, Zhang D Y, Wu L, et al. Analysis of the influence of convection heat transfer in circular tubes on ships in a polar environment [J]. Atmosphere, 2022, 13: 149
doi: 10.3390/atmos13020149
|
2 |
Yang M. Research on China's participation in the polar and deep sea's governance [J]. Ocean Dev. Manag., 2022, 39(5): 58
|
2 |
杨 淼. 我国参与极地深海治理问题研究 [J]. 海洋开发与管理, 2022, 39(5): 58
|
3 |
Zhang W H, Zhao J, Gu H, et al. Current situations and development measures of equipment industry of Arctic oil and gas development in China [J]. Int. Petrol. Econ., 2021, 29(3): 33
|
3 |
张文昊, 赵 洁, 顾 洪 等. 中国极地油气资源开发装备产业现状及发展策略建议 [J]. 国际石油经济, 2021, 29(3): 33
|
4 |
Yu L W, Wang J R, Wang S Q. Development strategy for polar equipment in China [J]. Strat. Study CAE, 2020, 22(6): 84
|
4 |
于立伟, 王俊荣, 王树青. 我国极地装备技术发展战略研究 [J]. 中国工程科学, 2020, 22(6): 84
|
5 |
Xia H C, He J W, Deng S J. Welding procedure of FH40 low-temperature high-strength steel for polar ships [J]. Marine Technol., 2022, 50(3): 70
|
5 |
夏皓春, 贺进巍, 邓胜杰. 极地船用FH40低温高强钢焊接工艺 [J]. 造船技术, 2022, 50(3): 70
|
6 |
Zhang P, Wang X S, Long J, et al. Development and microstructure analysis of high strength steel plate used for polar icebreaker and polar transport ships [A]. The 28th International Ocean and Polar Engineering Conference [C]. Sapporo, 2018
|
7 |
Ye Q B, Liu Z Y, Wang G D. Development of cryogenic steel for polar ships [A]. Proceedings of the 10th China Steel Annual Conference and the 6th Baosteel Academic Annual Conference II [C]. Shanghai, 2015
|
7 |
叶其斌, 刘振宇, 王国栋. 极地船舶用低温钢发展 [A]. 第十届中国钢铁年会暨第六届宝钢学术年会论文集II [C]. 上海, 2015
|
8 |
Li F R. Distribution of oxygen-minimum layer and factors controlling on it in areas adjacent to South Shetlands and North of Adelaide, Antarctica, in Summer [J]. Antarct. Res., 1989, 1: 21
|
8 |
李福荣. 南设得兰群岛及阿得雷德岛以北海域夏季溶解氧含量最小层分布及其控制因素 [J]. 南极研究, 1989, 1: 21
|
9 |
McIntire G, Lippert J, Yudelson J. The effect of dissolved CO2 and O2 on the corrosion of iron [J]. Corrosion, 1990, 46: 91
doi: 10.5006/1.3585085
|
10 |
Su H Y, Wei S C, Liang Y, et al. Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel [J]. Chin. J. Eng., 2019, 41: 1029
|
10 |
苏宏艺, 魏世丞, 梁义 等. 静水压与溶解氧耦合作用对低合金高强钢腐蚀电化学行为的影响 [J]. 工程科学学报, 2019, 41: 1029
|
11 |
Zhang H X, Wang X D, Jia R L, et al. Investigation on stress corrosion cracking behavior of welded high strength low alloy steel in seawater containing various dissolved oxygen concentrations [J]. Int. J. Electrochem. Sci., 2013, 8: 1262
doi: 10.1016/S1452-3981(23)14096-X
|
12 |
Sun F L, Ren S, Li Z, et al. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments [J]. Mater. Sci. Eng., 2017, 685A: 145
|
13 |
Xue F, Wei X, Dong J H, et al. Effect of chloride ion on corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution with different dissolved oxygen concentrations [J]. J. Mater. Sci. Technol., 2019, 35: 596
|
14 |
Wan H X, Du C W, Liu Z Y, et al. The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment [J]. Ocean Eng., 2016, 114: 216
doi: 10.1016/j.oceaneng.2016.01.020
|
15 |
Lu Q K, Wang L W, Xin J C, et al. Corrosion evolution and stress corrosion cracking of E690 steel for marine construction in artificial seawater under potentiostatic anodic polarization [J]. Constr. Build. Mater., 2020, 238: 117763
doi: 10.1016/j.conbuildmat.2019.117763
|
16 |
Wu X, Mu F W, Gordon S, et al. Development of a numerical model for simulating stress corrosion cracking in spent nuclear fuel canisters [J]. npj Mater. Degrad., 2021, 5: 28
doi: 10.1038/s41529-021-00174-5
|
17 |
Lu H, Shen Z, Zhang L F, et al. Effects of dissolved oxygen and temperature on the stress corrosion of O6Cr17Ni12Mo2Ti stainless steel in supercritical water [J]. Chin. J. Eng., 2015, 37: 1456
|
17 |
陆 辉, 沈 朝, 张乐福 等. 溶解氧和温度对O6Cr17Ni12Mo2Ti不锈钢在超临界水中应力腐蚀的影响 [J]. 工程科学学报, 2015, 37: 1456
|
18 |
Qiu J, Li C J, Du M. Stress corrosion and cathodic protection of X80 pipeline steel weldment in acidic seawater [J]. Corros. Prot., 2014, 35: 357
|
18 |
邱 景, 李成杰, 杜 敏. X80管线钢焊接件在酸性海水中的应力腐蚀及阴极保护 [J]. 腐蚀与防护, 2014, 35: 357
|
19 |
Melchers R E. Pitting corrosion of mild steel in marine immersion environment-Part 2: Variability of maximum pit depth [J]. Corrosion, 2004, 60: 937
doi: 10.5006/1.3287827
|
20 |
Valor A, Rivas D, Caleyo F, et al. Discussion: statistical characterization of pitting corrosion—Part 1: data analysis and Part 2: probabilistic modeling for maximum pit depth [J]. Corrosion, 2007, 63: 107
doi: 10.5006/1.3281683
|
21 |
Liu Y W, Wang Z Y, Wei Y H. Influence of seawater on the carbon steel initial corrosion behavior [J]. Int. J. Electrochem. Sci., 2019, 14: 1147
doi: 10.20964/2019.02.36
|
22 |
Zhou Y L, Chen J, Xu Y, et al. Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl- containing environment [J]. J. Mater. Sci. Technol., 2013, 29: 168
doi: 10.1016/j.jmst.2012.12.013
|
23 |
Li H, Liu Y H, Zhao L H, et al. Corrosion behavior of 300M ultra high strength steel in simulated marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 87
|
23 |
李 晗, 刘元海, 赵连红 等. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 87
|
24 |
Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
|
24 |
万 晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851
|
25 |
Liu J, Li X B, Wang J. Effect of hydrostatic pressure on the corrosion behaviors of two low alloy steels [J]. Acta Metall. Sin., 2011, 47: 697
doi: 10.3724/SP.J.1037.2010.00705
|
25 |
刘 杰, 李相波, 王 佳. 模拟深海压力对2种低合金钢腐蚀行为的影响 [J]. 金属学报, 2011, 47: 697
|
26 |
Hamadou L, Kadri A, Benbrahim N. Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy [J]. Appl. Surf. Sci., 2005, 252: 1510
doi: 10.1016/j.apsusc.2005.02.135
|
27 |
Li W, Brown B, Young D, et al. Investigation of pseudo-passivation of mild steel in CO2 corrosion [J]. Corrosion, 2014, 70: 294
doi: 10.5006/0950
|
28 |
Lu Y F, Dong J H, Ke W. Corrosion evolution of low alloy steel in deaerated bicarbonate solutions [J]. J. Mater. Sci. Technol., 2015, 31: 1047
doi: 10.1016/j.jmst.2014.10.013
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|