|
|
小冲杆技术及其在材料与铅铋脆化效应研究中的应用 |
和雅洁, 陈灵芝, 阮章顺, 付晓刚, 纪琤, 龙斌( ) |
中国原子能科学研究院 反应堆工程技术研究所 北京 102413 |
|
Progress of Small Punch Test Technique and Its Application in Detecting Embrittlement Effect of Molten Lead-bismuth on Metallic Materials |
HE Yajie, CHEN Lingzhi, RUAN Zhangshun, FU Xiaogang, JI Cheng, LONG Bin( ) |
Division of Reactor Engineering Technology Research, China Institute of Atomic Energy, Beijing 102413, China |
引用本文:
和雅洁, 陈灵芝, 阮章顺, 付晓刚, 纪琤, 龙斌. 小冲杆技术及其在材料与铅铋脆化效应研究中的应用[J]. 中国腐蚀与防护学报, 2024, 44(3): 567-575.
Yajie HE,
Lingzhi CHEN,
Zhangshun RUAN,
Xiaogang FU,
Cheng JI,
Bin LONG.
Progress of Small Punch Test Technique and Its Application in Detecting Embrittlement Effect of Molten Lead-bismuth on Metallic Materials[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 567-575.
1 |
Wu Y C, Wang M H, Huang Q Y, et al. Development status and prospects of lead-based reactors [J]. Nucl. Sci. Eng., 2015, 35: 213
doi: 10.1016/0029-5493(75)90199-5
|
1 |
吴宜灿, 王明煌, 黄群英 等. 铅基反应堆研究现状与发展前景 [J]. 核科学与工程, 2015, 35: 213
|
2 |
Zhong W H, Tong Z F, Ning G S, et al. Research progress in small specimen test technology for mechanical property of irradiated material [J]. At. Energy Sci. Technol., 2019, 53: 1894
|
2 |
钟巍华, 佟振峰, 宁广胜 等. 辐照用小尺寸样品力学性能表征技术研究进展 [J]. 原子能科学技术, 2019, 53: 1894
doi: 10.7538/yzk.2019.youxian.0365
|
3 |
Lacalle R, Álvarez J A, Gutiérrez-Solana F. Analysis of key factors for the interpretation of small punch test results [J]. Fatigue Fract. Eng. Mater. Struct., 2008, 31: 841
doi: 10.1111/ffe.2008.31.issue-10
|
4 |
Ye C Q, Vogt J B, Serre I P. Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: the role of loading rate and of the oxygen content in the liquid metal [J]. Mater. Sci. Eng., 2014, 608A: 242
|
5 |
Altstadt E, Ge H E, Kuksenko V, et al. Critical evaluation of the small punch test as a screening procedure for mechanical properties [J]. J. Nucl. Mater., 2016, 472: 186
doi: 10.1016/j.jnucmat.2015.07.029
|
6 |
Manahan M P, Argon A S, Harling O K. The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties [J]. J. Nucl. Mater., 1981, 104: 1545
doi: 10.1016/0022-3115(82)90820-0
|
7 |
Milička K, Dobeš F. Small punch testing of P91 steel [J]. Int. J. Press. Vessels Pip., 2006, 83: 625
doi: 10.1016/j.ijpvp.2006.07.009
|
8 |
Arunkumar S. Overview of small punch test [J]. Met. Mater. Int., 2020, 26: 719
doi: 10.1007/s12540-019-00454-5
|
9 |
Rasche S, Kuna M. Improved small punch testing and parameter identification of ductile to brittle materials [J]. Int. J. Press. Vessels Pip., 2015, 125: 23
doi: 10.1016/j.ijpvp.2014.09.001
|
10 |
Holmström S, Li Y, Dymacek P, et al. Creep strength and minimum strain rate estimation from small punch creep tests [J]. Mater. Sci. Eng., 2018, 731A: 161
|
11 |
Pathak K K, Dwivedi K K, Shukla M, et al. Influence of key test parameters on SPT results [J]. Indian J. Eng. Mater. Sci., 2009, 16: 385
|
12 |
Kannan C, Bhattacharya S, Sehgal D K, et al. Effect of specimen thickness and punch diameter in evaluation of small punch test parameters toward characterization of mechanical properties of Cr-Mo steels [J]. J. Test. Eval., 2014, 42(6): JTE20130299
|
13 |
Kurtz S M, Herr M, Edidin A A. The effect of specimen thickness on the mechanical behavior of UHMWPE characterized by the small punch test [C]. Symposium on Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene for Joint Replacements. Miami, FL, USA: 2004: 192
|
14 |
Kazakeviciute J, Rouse J P, Focatiis D, et al. Small specimen techniques for estimation of tensile, fatigue, fracture and crack propagation material model parameters [J]. J. Strain Anal. Eng. Des., 2022, 57(4): 227
doi: 10.1177/03093247211025208
|
15 |
Wang Z X, Shi H J, Lu J, et al. Small punch testing for assessing the fracture properties of the reactor vessel steel with different thicknesses [J]. Nucl. Eng. Des., 2008, 238: 3186
doi: 10.1016/j.nucengdes.2008.07.013
|
16 |
Ge H G, Huang Q Y, Xin J P, et al. Small specimen test techniques applied to evaluate the mechanical properties of CLAM steel [J]. J. Fusion Energy, 2015, 34(5): 1124
doi: 10.1007/s10894-015-9931-6
|
17 |
Siegl J, Haušild P, Janča A, et al. Characterisation of mechanical properties by small punch test [J]. Key Eng. Mater., 2004, 606: 15
doi: 10.4028/www.scientific.net/KEM
|
18 |
Bruchhausen M, Holmström S, Simonovski I, et al. Recent developments in small punch testing: tensile properties and DBTT [J]. Theor. Appl. Fract. Mech., 2016, 86: 2
doi: 10.1016/j.tafmec.2016.09.012
|
19 |
Kameda J. A kinetic model for ductile-brittle fracture mode transition behavior [J]. Acta Metall., 1986, 34: 2391
doi: 10.1016/0001-6160(86)90142-2
|
20 |
McNaney J, Lucas G E, Odette G R. Application of ball punch tests to evaluating fracture mode transition in ferritic steels [J]. J. Nucl. Mater., 1991, 179-181: 429
doi: 10.1016/0022-3115(91)90116-O
|
21 |
Campitelli E N, Spätig P, Bonadé R, et al. Assessment of the constitutive properties from small ball punch test: experiment and modeling [J]. J. Nucl. Mater., 2004, 335(3): 366
doi: 10.1016/j.jnucmat.2004.07.052
|
22 |
Altstadt E, Bergner F, Houska M. Use of the small punch test for the estimation of ductile-to-brittle transition temperature shift of irradiated steels [J]. Nucl. Mater. Energy, 2021, 26: 100918
|
23 |
Norris S D, Parker J D. Deformation processes during disc bend loading [J]. Mater. Sci. Technol., 1996, 12: 163
doi: 10.1179/mst.1996.12.2.163
|
24 |
García T E, Rodríguez C, Belzunce F J, et al. Estimation of the mechanical properties of metallic materials by means of the small punch test [J]. J. Alloy. Compd., 2014, 582: 708
doi: 10.1016/j.jallcom.2013.08.009
|
25 |
Ha J S, Fleury E. Small punch tests to estimate the mechanical properties of steels for steam power plant: II. Fracture toughness [J]. Int. J. Press. Vessels Pip., 1998, 75: 707
doi: 10.1016/S0308-0161(98)00075-1
|
26 |
Lancaster R J, Jeffs S P, Illsley H W, et al. Development of a novel methodology to study fatigue properties using the small punch test [J]. Mater. Sci. Eng., 2019, 748A: 21
|
27 |
Matijasevic M, Lucon E, Almazouzi A. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300oC [J]. J. Nucl. Mater., 2008, 377: 101
doi: 10.1016/j.jnucmat.2008.02.063
|
28 |
Van den Bosch J, Coen G, Almazouzi A, et al. Fracture toughness assessment of ferritic-martensitic steel in liquid lead-bismuth eutectic [J]. J. Nucl. Mater., 2009, 385: 250
doi: 10.1016/j.jnucmat.2008.11.024
|
29 |
Serre I, Vogt J B. Heat treatment effect of T91 martensitic steel on liquid metal embrittlement [J]. J. Nucl. Mater., 2008, 376: 330
doi: 10.1016/j.jnucmat.2008.02.018
|
30 |
Long B, Dai Y. Investigation of LBE embrittlement effects on the fracture properties of T91 [J]. J. Nucl. Mater., 2008, 376: 341
doi: 10.1016/j.jnucmat.2008.02.022
|
31 |
Liu J, Yan W, Sha W, et al. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic [J]. J. Nucl. Mater., 2016, 473: 189
doi: 10.1016/j.jnucmat.2016.02.032
|
32 |
Auger T, Serre I, Lorang G, et al. Role of oxidation on LME of T91 steel studied by small punch test [J]. J. Nucl. Mater., 2008, 376: 336
doi: 10.1016/j.jnucmat.2008.02.076
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|