Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 567-575     CSTR: 32134.14.1005.4537.2023.207      DOI: 10.11902/1005.4537.2023.207
  综合评述 本期目录 | 过刊浏览 |
小冲杆技术及其在材料与铅铋脆化效应研究中的应用
和雅洁, 陈灵芝, 阮章顺, 付晓刚, 纪琤, 龙斌()
中国原子能科学研究院 反应堆工程技术研究所 北京 102413
Progress of Small Punch Test Technique and Its Application in Detecting Embrittlement Effect of Molten Lead-bismuth on Metallic Materials
HE Yajie, CHEN Lingzhi, RUAN Zhangshun, FU Xiaogang, JI Cheng, LONG Bin()
Division of Reactor Engineering Technology Research, China Institute of Atomic Energy, Beijing 102413, China
引用本文:

和雅洁, 陈灵芝, 阮章顺, 付晓刚, 纪琤, 龙斌. 小冲杆技术及其在材料与铅铋脆化效应研究中的应用[J]. 中国腐蚀与防护学报, 2024, 44(3): 567-575.
Yajie HE, Lingzhi CHEN, Zhangshun RUAN, Xiaogang FU, Cheng JI, Bin LONG. Progress of Small Punch Test Technique and Its Application in Detecting Embrittlement Effect of Molten Lead-bismuth on Metallic Materials[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 567-575.

全文: PDF(9093 KB)   HTML
摘要: 

第四代反应堆中铅冷快堆是一种非常有发展前景的堆型。在铅冷快堆包壳材料设计时,需要重点考虑包壳材料与高温铅铋的相容性,关注其抗液态金属腐蚀能力,尤其是腐蚀介质与应力耦合时材料性能的变化。小冲杆实验(SPT)是一种使用小尺寸样品评估材料服役条件下力学性能变化的实验方法,这种方法可以直接在正在使用的材料中提取样品而不损害其完整性,因此小冲杆测试非常适用于所研究材料数量有限或研究在役材料的情况。本文简要介绍了小冲杆测试技术,归纳了小冲杆测试与标准尺寸测试实验的相关性,阐述了使用小冲杆技术进行的关键材料力学性能研究,特别阐述了小冲杆测试在研究结构材料液态金属脆化效应(LME)方面的应用。结果可为小冲杆技术应用于研究材料液态铅铋脆化效应提供技术方法及理论支持。

关键词 小冲杆测试结构材料力学性能液态金属脆化效应    
Abstract

Lead-cooled fast reactor is a promising reactor type of the fourth-generation reactors. In the design of the cladding material, it is necessary to pay attention to the compatibility of the cladding material with the molten Pb-Bi alloy, and its resistance to liquid metal corrosion, especially, the properties of structural materials will be significantly degraded by the synergistic action of corrosive molten Pb-Bi alloy and external stress. The Small Punch Test (SPT) is a testing method, that uses a small size sample to assess the changes in the mechanical properties of a structural material in service conditions. This method can extract samples directly from the structural material in use without compromising its integrity. Therefore, the SPT is very suitable for situations where the number of materials under study is limited or where materials in service are studied. This paper briefly introduces the SPT technique, summarizes the research on the correlation between the SPT and the standard size test at home and abroad, expounds the research on mechanical properties of key materials by using small punch technique, especially expounds the application of SPT in the study of liquid metal embrittlement effect (LME) of structural materials. The results can provide technical methods and theoretical support for the application of small punch technique in the study of liquid Pb-Bi alloy induced embrittlement of engineering materials.

Key wordssmall punch test (SPT)    structural material    mechanical property    liquid metal embrittlement (LME)
收稿日期: 2023-06-30      32134.14.1005.4537.2023.207
ZTFLH:  TL341  
基金资助:国家磁约束核聚变能发展研究专项(2022YFE03120001);国家原子能机构核材料技术创新中心(ICNM-2023-ZH-07)
通讯作者: 龙斌,E-mail: binlong@ciae.ac.cn,研究方向为反应堆结构材料及快堆液态金属冷却剂技术
Corresponding author: LONG Bin, E-mail: binlong@ciae.ac.cn
作者简介: 和雅洁,女,2000年生,硕士生
图1  SPT标准贯入实验特征载荷-位移曲线[9]
图2  冲头示意图[10]
图3  Fy值确定示意图[8]
图4  Ti-6Al-4V试样SPT实验的SEM断口形貌[26]
图5  200℃时未辐照和中子辐照的T91钢的载荷-位移曲线[5]
图6  小冲杆实验装置图[29]
图7  热处理后T91钢的SPT的载荷-位移曲线[29]
图8  T91钢在300℃饱和氧LBE中不同加载速率下的载荷-位移曲线及断口SEM图[4]
ConditionSpecimen

O2 exposure time

h

O2 pressure

MPa

Main type of superficial oxide

Estimated thickness

(oxide atomic monolayer)

Non-oxidizedDNO200--
Low oxidationD0.5O20.50.002Cr2O32~3
Medium oxidationD4O24~80.002Fe1+x Cr2-x O45~6
Air-oxidizedDAO21000.021Fe2O311~12
表1  T91钢在不同条件下氧化产物情况
图9  不同氧化条件下SPT曲线及断裂面SEM图[32]
1 Wu Y C, Wang M H, Huang Q Y, et al. Development status and prospects of lead-based reactors [J]. Nucl. Sci. Eng., 2015, 35: 213
doi: 10.1016/0029-5493(75)90199-5
1 吴宜灿, 王明煌, 黄群英 等. 铅基反应堆研究现状与发展前景 [J]. 核科学与工程, 2015, 35: 213
2 Zhong W H, Tong Z F, Ning G S, et al. Research progress in small specimen test technology for mechanical property of irradiated material [J]. At. Energy Sci. Technol., 2019, 53: 1894
2 钟巍华, 佟振峰, 宁广胜 等. 辐照用小尺寸样品力学性能表征技术研究进展 [J]. 原子能科学技术, 2019, 53: 1894
doi: 10.7538/yzk.2019.youxian.0365
3 Lacalle R, Álvarez J A, Gutiérrez-Solana F. Analysis of key factors for the interpretation of small punch test results [J]. Fatigue Fract. Eng. Mater. Struct., 2008, 31: 841
doi: 10.1111/ffe.2008.31.issue-10
4 Ye C Q, Vogt J B, Serre I P. Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: the role of loading rate and of the oxygen content in the liquid metal [J]. Mater. Sci. Eng., 2014, 608A: 242
5 Altstadt E, Ge H E, Kuksenko V, et al. Critical evaluation of the small punch test as a screening procedure for mechanical properties [J]. J. Nucl. Mater., 2016, 472: 186
doi: 10.1016/j.jnucmat.2015.07.029
6 Manahan M P, Argon A S, Harling O K. The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties [J]. J. Nucl. Mater., 1981, 104: 1545
doi: 10.1016/0022-3115(82)90820-0
7 Milička K, Dobeš F. Small punch testing of P91 steel [J]. Int. J. Press. Vessels Pip., 2006, 83: 625
doi: 10.1016/j.ijpvp.2006.07.009
8 Arunkumar S. Overview of small punch test [J]. Met. Mater. Int., 2020, 26: 719
doi: 10.1007/s12540-019-00454-5
9 Rasche S, Kuna M. Improved small punch testing and parameter identification of ductile to brittle materials [J]. Int. J. Press. Vessels Pip., 2015, 125: 23
doi: 10.1016/j.ijpvp.2014.09.001
10 Holmström S, Li Y, Dymacek P, et al. Creep strength and minimum strain rate estimation from small punch creep tests [J]. Mater. Sci. Eng., 2018, 731A: 161
11 Pathak K K, Dwivedi K K, Shukla M, et al. Influence of key test parameters on SPT results [J]. Indian J. Eng. Mater. Sci., 2009, 16: 385
12 Kannan C, Bhattacharya S, Sehgal D K, et al. Effect of specimen thickness and punch diameter in evaluation of small punch test parameters toward characterization of mechanical properties of Cr-Mo steels [J]. J. Test. Eval., 2014, 42(6): JTE20130299
13 Kurtz S M, Herr M, Edidin A A. The effect of specimen thickness on the mechanical behavior of UHMWPE characterized by the small punch test [C]. Symposium on Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene for Joint Replacements. Miami, FL, USA: 2004: 192
14 Kazakeviciute J, Rouse J P, Focatiis D, et al. Small specimen techniques for estimation of tensile, fatigue, fracture and crack propagation material model parameters [J]. J. Strain Anal. Eng. Des., 2022, 57(4): 227
doi: 10.1177/03093247211025208
15 Wang Z X, Shi H J, Lu J, et al. Small punch testing for assessing the fracture properties of the reactor vessel steel with different thicknesses [J]. Nucl. Eng. Des., 2008, 238: 3186
doi: 10.1016/j.nucengdes.2008.07.013
16 Ge H G, Huang Q Y, Xin J P, et al. Small specimen test techniques applied to evaluate the mechanical properties of CLAM steel [J]. J. Fusion Energy, 2015, 34(5): 1124
doi: 10.1007/s10894-015-9931-6
17 Siegl J, Haušild P, Janča A, et al. Characterisation of mechanical properties by small punch test [J]. Key Eng. Mater., 2004, 606: 15
doi: 10.4028/www.scientific.net/KEM
18 Bruchhausen M, Holmström S, Simonovski I, et al. Recent developments in small punch testing: tensile properties and DBTT [J]. Theor. Appl. Fract. Mech., 2016, 86: 2
doi: 10.1016/j.tafmec.2016.09.012
19 Kameda J. A kinetic model for ductile-brittle fracture mode transition behavior [J]. Acta Metall., 1986, 34: 2391
doi: 10.1016/0001-6160(86)90142-2
20 McNaney J, Lucas G E, Odette G R. Application of ball punch tests to evaluating fracture mode transition in ferritic steels [J]. J. Nucl. Mater., 1991, 179-181: 429
doi: 10.1016/0022-3115(91)90116-O
21 Campitelli E N, Spätig P, Bonadé R, et al. Assessment of the constitutive properties from small ball punch test: experiment and modeling [J]. J. Nucl. Mater., 2004, 335(3): 366
doi: 10.1016/j.jnucmat.2004.07.052
22 Altstadt E, Bergner F, Houska M. Use of the small punch test for the estimation of ductile-to-brittle transition temperature shift of irradiated steels [J]. Nucl. Mater. Energy, 2021, 26: 100918
23 Norris S D, Parker J D. Deformation processes during disc bend loading [J]. Mater. Sci. Technol., 1996, 12: 163
doi: 10.1179/mst.1996.12.2.163
24 García T E, Rodríguez C, Belzunce F J, et al. Estimation of the mechanical properties of metallic materials by means of the small punch test [J]. J. Alloy. Compd., 2014, 582: 708
doi: 10.1016/j.jallcom.2013.08.009
25 Ha J S, Fleury E. Small punch tests to estimate the mechanical properties of steels for steam power plant: II. Fracture toughness [J]. Int. J. Press. Vessels Pip., 1998, 75: 707
doi: 10.1016/S0308-0161(98)00075-1
26 Lancaster R J, Jeffs S P, Illsley H W, et al. Development of a novel methodology to study fatigue properties using the small punch test [J]. Mater. Sci. Eng., 2019, 748A: 21
27 Matijasevic M, Lucon E, Almazouzi A. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300oC [J]. J. Nucl. Mater., 2008, 377: 101
doi: 10.1016/j.jnucmat.2008.02.063
28 Van den Bosch J, Coen G, Almazouzi A, et al. Fracture toughness assessment of ferritic-martensitic steel in liquid lead-bismuth eutectic [J]. J. Nucl. Mater., 2009, 385: 250
doi: 10.1016/j.jnucmat.2008.11.024
29 Serre I, Vogt J B. Heat treatment effect of T91 martensitic steel on liquid metal embrittlement [J]. J. Nucl. Mater., 2008, 376: 330
doi: 10.1016/j.jnucmat.2008.02.018
30 Long B, Dai Y. Investigation of LBE embrittlement effects on the fracture properties of T91 [J]. J. Nucl. Mater., 2008, 376: 341
doi: 10.1016/j.jnucmat.2008.02.022
31 Liu J, Yan W, Sha W, et al. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic [J]. J. Nucl. Mater., 2016, 473: 189
doi: 10.1016/j.jnucmat.2016.02.032
32 Auger T, Serre I, Lorang G, et al. Role of oxidation on LME of T91 steel studied by small punch test [J]. J. Nucl. Mater., 2008, 376: 336
doi: 10.1016/j.jnucmat.2008.02.076
[1] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[2] 冀跃飞, 郝龙, 王俭秋, 李庆华, 郑跃, 于沛, 柯伟. 压水堆二回路碱化剂与材料的相容性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 267-277.
[3] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[4] 尚进, 古岩, 赵京, 王哲, 张博, 赵统君, 陈泽浩, 王金龙. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[5] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[6] 丁康康, 刘少通, 郭为民, 苗依纯, 张彭辉, 程文华, 侯健. 聚乙烯青岛海洋大气环境腐蚀老化预测研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1070-1074.
[7] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[8] 张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[9] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[10] 陈菊娜,吴佳佳,王鹏,张盾. 脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[11] 陈磊,裴志亮,肖金泉,宫骏,孙超. 磁过滤电弧离子镀制备TiAlN涂层的结构与性能表征[J]. 中国腐蚀与防护学报, 2017, 37(3): 241-246.
[12] 邓平,孙晨,彭群家,韩恩厚,柯伟. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.
[13] 马成, 彭群家, 韩恩厚, 柯伟. 核电结构材料应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 37-45.
[14] 吴进怡,罗琦,肖伟龙,柴柯,曹阳. 海水环境中弧菌对45钢腐蚀行为及力学性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(4): 343-348.
[15] 钟曼英. 氢对2(1/4)Cr-1Mo钢力学性能的影响[J]. 中国腐蚀与防护学报, 2011, 31(3): 236-239.