Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 159-166     CSTR: 32134.14.1005.4537.2023.064      DOI: 10.11902/1005.4537.2023.064
  研究报告 本期目录 | 过刊浏览 |
钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究
李建呈1, 赵京2, 谢新3, 王金龙1(), 陈明辉1, 王福会1
1.东北大学 沈阳材料科学国家研究中心腐蚀与防护研究部 沈阳 110819
2.中国核动力研究设计院 成都 610213
3.上海船舶工艺研究所(中国船舶集团有限公司第十一研究所) 上海 200032
Preparation of Phosphate Coatings on Ti-alloy and Their Corrosion Behavior Beneath Salt-mixture in Water Vapor Flow at 650oC
LI Jiancheng1, ZHAO Jing2, XIE Xin3, WANG Jinlong1(), CHEN Minghui1, WANG Fuhui1
1.Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Nuclear Power Institute of China, Chengdu 610213, China
3.Shipbuilding Technology Research Institute (The 11th Institute of China State Shipbuilding Corporation), Shanghai 200032, China
引用本文:

李建呈, 赵京, 谢新, 王金龙, 陈明辉, 王福会. 钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
Jiancheng LI, Jing ZHAO, Xin XIE, Jinlong WANG, Minghui CHEN, Fuhui WANG. Preparation of Phosphate Coatings on Ti-alloy and Their Corrosion Behavior Beneath Salt-mixture in Water Vapor Flow at 650oC[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 159-166.

全文: PDF(13262 KB)   HTML
摘要: 

以硅溶胶为成膜改性物,Al(H2PO4)3为成膜物,陶瓷相为填料并辅以助剂设计了硅溶胶改性磷酸盐涂层。结果表明,硅溶胶对磷酸盐涂层固化过程中玻璃相的形成具有促进作用,当成膜物中硅溶胶与Al(H2PO4)3质量比达到1∶1时,成膜物为完全的玻璃相,进而获得致密的磷酸盐涂层。以硅溶胶改性磷酸盐涂层作为钛合金的高温防护涂层,在650℃盐水蒸气介质中对其腐蚀行为进行了研究。结果表明,改性磷酸盐涂层为钛合金提供了优异的耐高温盐水蒸气腐蚀性能,成膜物和填料的化学稳定性是改性涂层耐蚀的根本因素。涂层在650℃盐水蒸气环境下腐蚀100 h后依然致密,未出现基体合金的腐蚀,填料中Al片及其腐蚀产物在涂层中平行于基体排列,可有效阻碍Cl-等有害离子向基体的扩散,与Na2SO4反应则抑制了熔融盐向涂层内部的侵入及其对钛合金基体的侵蚀。

关键词 磷酸盐涂层改性钛合金高温腐蚀    
Abstract

Phosphate coatings, composed of silica sol modified Al(H2PO4)3, ceramic fillers and additives, are prepared and then applied on Ti-6Al-4V alloy, which are further characterized by means of XRD and Fourier transform infrared spectrometer, as well as corrosion test beneath deposits of salt-mixture in vapor flow at 650oC. The results show that silica sol can promote the formation of glass phase while the phosphate coating curing. When the mass ratio of silica sol to Al(H2PO4)3 reaches 1∶1, the mixture of silica sol to Al(H2PO4)3 may producea film of complete glass phase which ensures the formation a completely dense phosphate coating. The modified phosphate coating provides excellent corrosion resistance to salt-mixture in vapor flow at 650oC, and the chemical stability of the film and filler is the vital factor of the corrosion resistance of the modified coating. The coating is still dense after 100 h of corrosion at 650oC in such environment, and rare corrosion products of elements of the matrix alloy appears. As one filler of small amount, the Al flakes and their corrosion products are arranged parallel to the matrix in the coating, which can effectively prevent the diffusion of harmful ions such as Cl- to the matrix, meanwhile which can react with Na2SO4 so that inhibit the intrusion of molten salt into the coating and the corrosion of Ti-alloy matrix.

Key wordsphosphate coating    modify    Ti-alloy    high temperature corrosion
收稿日期: 2023-03-10      32134.14.1005.4537.2023.064
ZTFLH:  TG174  
通讯作者: 王金龙,E-mail:wangjinlong@mail.neu.edu.cn,研究方向为高温防护涂层
Corresponding author: WANG Jinlong, E-mail: wangjinlong@mail.neu.edu.cn
作者简介: 李建呈,男,1997年生,硕士,助理研究员
GroupAl(H2PO4)3Silica sol
PSi37525
PSi26733
PSi15050
表1  3种成膜物成分 (mass fraction / %)
图1  高温水蒸气腐蚀实验装置示意图
图2  3种比例的成膜物的红外吸收光谱
图3  PSi3,PSi2,PSi1成膜物的XRD
图4  制备态硅溶胶改性磷酸盐涂层的表面与截面微观形貌以及截面EDS元素面分析
图5  制备态硅溶胶改性磷酸盐涂层的XRD图谱
图6  未涂覆和涂覆硅溶胶改性磷酸盐涂层的Ti-6Al-4V合金试样原始态及650℃盐-水蒸气环境中腐蚀100 h后的宏观形貌
图7  未涂覆和涂覆硅溶胶改性磷酸盐涂层的Ti-6Al-4V合金试样在650℃盐-水蒸气环境中腐蚀100h的动力学曲线
图8  硅溶胶改性磷酸盐涂层650℃盐-水蒸气环境腐蚀100 h后XRD图谱
图9  硅溶胶改性磷酸盐涂层在650℃盐-水蒸气环境中腐蚀100 h后表面和截面微观形貌及截面EDS元素面分析
1 Ardo F M, Lim J W, Ramli A, et al. A review in redressing challenges to produce sustainable hydrogen from microalgae for aviation industry [J]. Fuel, 2022, 330: 125646
doi: 10.1016/j.fuel.2022.125646
2 Zeng C, Stringer L C, Lv T Y. The spatial spillover effect of fossil fuel energy trade on CO2 emissions [J]. Energy, 2021, 223: 120038
doi: 10.1016/j.energy.2021.120038
3 Cloete S, del Pozo C A, Álvaro Á J. System-friendly process design: optimizing blue hydrogen production for future energy systems [J]. Energy, 2022, 259: 124954
doi: 10.1016/j.energy.2022.124954
4 Pérez F J, Castañeda S I. Study of oxyhydroxides formation on P91 ferritic steel and slurry coated by Al in contact with Ar+80%H2O at 650oC by TG-Mass spectrometry [J]. Surf. Coat. Technol., 2007, 201: 6239
doi: 10.1016/j.surfcoat.2006.11.029
5 Ehlers J, Young D J, Smaardijk E J, et al. Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments [J]. Corros. Sci., 2006, 48: 3428
doi: 10.1016/j.corsci.2006.02.002
6 Othman N K, Othman N, Zhang J, et al. Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres [J]. Corros. Sci., 2009, 51: 3039
doi: 10.1016/j.corsci.2009.08.032
7 Sánchez L, Bolívar F J, Hierro M P, et al. Temperature dependence of the oxide growth on aluminized 9-12%Cr ferritic-martensitic steels exposed to water vapour oxidation [J]. Thin Solid Films, 2009, 517: 3292
doi: 10.1016/j.tsf.2009.01.031
8 Esmaeili Z, Loghman-Estarki M R, Ramezani M, et al. Toward hardening of NiCrAlY alloy by spark plasma sintering of NiCrAlY-nano Si3N4-graphite nanocomposite [J]. J. Alloy. Compd., 2020, 847: 155802
doi: 10.1016/j.jallcom.2020.155802
9 Reddy M, Prasad C D, Patil P, et al. Hot corrosion behavior of plasma-sprayed NiCrAlY/TiO2 and NiCrAlY/Cr2O3/YSZ cermets coatings on alloy steel [J]. Surf. Interfaces, 2021, 22: 100810
10 Zhang M M, Niu Y S, Xin L, et al. Studies on corrosion resistance of thick Ti/TiN multilayer coatings under solid NaCl-H2O-O2 at 450oC [J]. Ceram. Int., 2020, 46: 19274
doi: 10.1016/j.ceramint.2020.04.267
11 Zheng D Y, Zhu S L, Wang F H. The influence of TiAlN and enamel coatings on the corrosion behavior of Ti6Al4V alloy in the presence of solid NaCl deposit and water vapor at 450oC [J]. Surf. Coat. Technol., 2007, 201: 5859
doi: 10.1016/j.surfcoat.2006.10.038
12 Han R F, Tariq N U H, Li J Y, et al. A novel phosphate-ceramic coating for high temperature oxidation resistance of Ti65 alloys [J]. Ceram. Int., 2019, 45: 23895
13 Huang X L, Yu L, Dong Y S. Corrosion resistance of a novel ceria doped aluminum phosphate ceramic coating on cast Al-Si alloy by steam-assisted curing [J]. Corros. Sci., 2021, 182: 109256
doi: 10.1016/j.corsci.2021.109256
14 Wacławska I, Szumera M, Sułowska J. Structural characterization of zinc-modified glasses from the SiO2-P2O5-K2O-CaO-MgO system [J]. J. Alloy. Compd., 2016, 666: 352
doi: 10.1016/j.jallcom.2016.01.125
15 Sitarz M. Influence of modifying cations on the structure and texture of silicate-phosphate glasses [J]. J. Mol. Struct., 2008, 887: 237
doi: 10.1016/j.molstruc.2007.12.030
16 SzumeraM. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, raman and 31P MAS NMR spectroscopies [J]. Spectrochim. Acta, 2014, 130A: 1
17 Mahdy E A, Khattari Z Y, Salem W M, et al. Study the structural, physical, and optical properties of CaO-MgO-SiO2-CaF2 bioactive glasses with Na2O and P2O5 dopants [J]. Mater. Chem. Phys., 2022, 286: 126231
doi: 10.1016/j.matchemphys.2022.126231
18 Li C, Liu L D, He X, et al. Thermal behavior, structure, crystallization and solubility of the melt-derived SiO2-P2O5-Na2O-F-MO (M = Ca, Sr, Zn) glasses [J]. Ceram. Int., 2022, 48: 7796
doi: 10.1016/j.ceramint.2021.11.327
19 Oueslati-Omrani R, Hamzaoui A H. Effect of ZnO incorporation on the structural, thermal and optical properties of phosphate based silicate glasses [J]. Mater. Chem. Phys., 2020, 242: 122461
doi: 10.1016/j.matchemphys.2019.122461
20 Hussein S A, Roshdy R, El-sadek M S A, et al. Effect of Al2O3 on the structural, optical and mechanical properties of B2O3-CaO-SiO2-P2O5-Na2O glass system [J]. Optik, 2022, 250: 168281
doi: 10.1016/j.ijleo.2021.168281
21 Zhu Q G, Zhao G L, Jin J T, et al. The role of phosphate in the glass forming region, structure and mechanical properties for the SiO2-Al2O3-P2O5 system contains high-aluminum [J]. J. Non-Cryst. Solids, 2022, 583: 121464
doi: 10.1016/j.jnoncrysol.2022.121464
22 Sánchez-Enríquez J, Reyes-Gasga J. Obtaining Ca(H2PO4)2·H2O, monocalcium phosphate monohydrate, via monetite from brushite by using sonication [J]. Ultrason. Sonochem., 2013, 20: 948
doi: 10.1016/j.ultsonch.2012.10.019 pmid: 23219258
23 Frost R L, Xi Y F, Palmer S J. Are the ‘cave’ minerals archerite (K,NH4)H2PO4 and biphosphammite (K,NH4)H2PO4 identical? A molecular structural study [J]. J. Mol. Struct., 2011, 1001: 49
doi: 10.1016/j.molstruc.2011.06.015
[1] 陈施润, 陈文革, 钱颖, 张辉. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 107-118.
[2] 李丹鸿, 杨腾逊, 孙天翔, 李兴霖冒, 马程成, 张玥, 陈守刚. 改性SiO2 气凝胶聚氨酯复合涂层的制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.
[3] 曹京宜, 李敬, 殷文昌, 孟凡帝, 刘莉. 组胺改性环氧树脂及其对有机涂层性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 151-158.
[4] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[5] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[6] 郭涛, 黄峰, 胡骞, 刘静. 9Ni钢铸坯在900~1250 ℃空气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[7] 柳志浩, 刘光明, 何思凡, 董猛, 李玉, 李富天, 祝婷. F22母材与焊缝在模拟沿海空气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
[8] 王碧辉, 肖博, 潘佩媛, 刘聚, 张乃强. 固体氧化物燃料电池金属连接体腐蚀研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 6-12.
[9] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[10] 曹京宜, 臧勃林, 曹宝学, 李亮, 方志刚, 郑宏鹏, 刘莉, 王福会. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1009-1015.
[11] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[12] 官宇, 刘光明, 张民强, 刘欢欢, 柳志浩, 龚兵兵. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.
[13] 戈成岳, 罗祥平, 王静, 段继周, 王宁, 侯保荣. 硅烷偶联剂 (KH550) 和羟基硅油共同改性环氧树脂及配制富镁底漆性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.
[14] 刘玲, 邵紫雅, 贾天越, 刘国强, 雷冰, 孟国哲. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 523-530.
[15] 刘煊煊, 于金山, 高燕, 赵鹏, 王启伟, 杜卓玲, 张俊喜. APTES改性蒙脱土对镁合金表面杂化溶胶-凝胶涂层防护性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 464-470.