Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1094-1100     CSTR: 32134.14.1005.4537.2023.132      DOI: 10.11902/1005.4537.2023.132
  海洋材料腐蚀与防护及钢筋混凝土耐久性与设施服役安全专栏 本期目录 | 过刊浏览 |
加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究
李佳媛1,2, 曾天昊1,2, 刘友通1,2, 吴晓春1,2()
1.上海大学材料科学与工程学院 上海 200444
2.上海大学 高品质特殊钢冶金与制备省部共建国家重点实验室 上海 200444
Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress
LI Jiayuan1,2, ZENG Tianhao1,2, LIU Youtong1,2, WU Xiaochun1,2()
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.State Key Laboratory of Metallurgy and Preparation of High Quality Special Steel, Shanghai University, Shanghai 200444, China
全文: PDF(19880 KB)   HTML
摘要: 

采用应力腐蚀实验方法,对比研究了添加1%Cu的4Cr16MoCu及4Cr16Mo两种材料在3.5%NaCl溶液中的耐蚀性能。结果表明,在低温250 ℃回火后,两种材料的耐蚀性能没有明显差异,但在600 ℃高温回火后,4Cr16MoCu材料的耐蚀性能显著增强,通过微结构分析推测,这与富铜相析出有关。通过腐蚀形貌及腐蚀形貌发展过程分析提出此材料在应力腐蚀下的腐蚀发展模型,即在腐蚀初期由于钝化膜破裂引起表面阴阳极区分,形成类电解抛光效应剥离表面钝化膜后进一步形成点蚀。

关键词 马氏体不锈钢富Cu相应力腐蚀类电解抛光效应    
Abstract

The corrosion resistance of 4Cr16Mo martensite stainless steels without and with 1%Cu addition (i.e., 4Cr16MoCu) in 3.5%NaCl solution was comparatively studied by three-point flexural loading stress corrosion test method. The results show that there is no significant difference in corrosion resistance between the two steels after tempering at 250 ℃. However, after tempering at 600 ℃, the corrosion resistance of 4Cr16MoCu steel is significantly enhanced. Through microstructure analysis, it is speculated that this is related to the precipitation of the Cu-rich phase. A stress corrosion model for the 4Cr16MoCu steel is proposed based on the characteristics and evolution process of corrosion morphology of the steel, i.e., in the early stage of corrosion, breaks of the passivation film may induce the emerging discrete anode- and cathode-spots on the steel surface, further result in an electrolytic polishing-like effect to peel off the surface passivation film and finally the pitting corrosion.

Key wordsmartensite stainless steel    Cu-rich phase    stress corrosion    quasi-electrolytic polishing ion effect
收稿日期: 2023-05-04      32134.14.1005.4537.2023.132
ZTFLH:  TG171  
基金资助:国家重点研发计划(2016YFB0300400)
通讯作者: 吴晓春,E-mail: xcwu@staff.shu.edu.cn,研究方向为先进模具材料及其表面处理   
Corresponding author: WU Xiaochun, E-mail: xcwu@staff.shu.edu.cn   
作者简介: 李佳媛,女,1994年生,博士生

引用本文:

李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
LI Jiayuan, ZENG Tianhao, LIU Youtong, WU Xiaochun. Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1094-1100.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.132      或      https://www.jcscp.org/CN/Y2023/V43/I5/1094

MaterialCCrMoSiMnCuNiFe
4Cr16Mo0.3715.321.100.720.51-0.16Bal.
4Cr16MoCu0.3115.941.080.460.601.070.88Bal.
表1  两种实验用钢的成分 (mass fraction / %)
图1  三点弯曲应力腐蚀实验示意图
图2  样品在100 MPa应力下的腐蚀形貌
图3  250 ℃回火后材料表面腐蚀产物拉曼光谱
图4  4Cr16MoCu-250 ℃回火样的局部腐蚀形貌
图5  4Cr16MoCu在600 ℃回火后的STEM图像及面扫描结果
图6  腐蚀圈形成模型
图7  4Cr16Mo材料的腐蚀后表面形貌
1 Park T W, Kang C Y. The effects of PWHT on the toughness of weld HAZ in Cu-containing HSLA-100 steel [J]. ISIJ Int., 2000, 40: S49
doi: 10.2355/isijinternational.40.Suppl_S49
2 Lee J S, Kim S T, Lee I S, et al. Effect of copper addition on the active corrosion behavior of hyper duplex stainless steels in sulfuric acid [J]. Mater. Trans., 2012, 53: 1048
doi: 10.2320/matertrans.M2012008
3 Liu X H, Liu L L, Sui F L, et al. Influence of Cu on the microstructure and corrosion resistance of cold-rolled type 204 stainless steels [J]. J. Solid State Electrochem., 2020, 24: 1197
doi: 10.1007/s10008-020-04614-1
4 Liu H Y, Zhang X Q, Teng Y X, et al. Corrosion resistance and antifouling performance of copper-bearing low-carbon steel in marine environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 679
4 刘宏宇, 张喜庆, 滕莹雪 等. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 679
doi: 10.11902/1005.4537.2020.242
5 Li B B, Qu H P, Lang Y P, et al. Copper alloying content effect on pitting resistance of modified 00Cr20Ni18Mo6CuN super austenitic stainless steels [J]. Corros. Sci., 2020, 173: 108791
doi: 10.1016/j.corsci.2020.108791
6 Li Y Q, Du Q M, Cheng H M. Effect of alloy elements on corrosion behavior of low alloy steel used for oil tanker [J]. J. Iron Steel Res. Int., 2017, 29: 506
6 李玉谦, 杜琦铭, 成慧梅. 合金元素对油船用低合金钢腐蚀行为的影响 [J]. 钢铁研究学报, 2017, 29: 506
7 Wang H M, Huang F, Yuan W, et al. Corrosion behavior of a novel Cu-Mo weathering steel in an artificial marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 507
7 汪涵敏, 黄 峰, 袁 玮 等. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 507
doi: 10.11902/1005.4537.2022.170
8 Oguzie E E, Li J B, Liu Y Q, et al. The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels [J]. Electrochim. Acta, 2010, 55: 5028
doi: 10.1016/j.electacta.2010.04.015
9 He J B. Effect of Cu-rich nanophase on microstructure, mechanics and corrosion property of steel [D]. Wuhan: Wuhan University of Science and Technology, 2019
9 贺吉白. 富铜纳米相对钢的组织、力学及腐蚀性能的影响 [D]. 武汉: 武汉科技大学, 2019
10 Luo H, Yu Q, Dong C F, et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel [J]. Corros. Sci., 2018, 139: 185
doi: 10.1016/j.corsci.2018.04.032
11 Liu C, Chen T Q, Li X G. Research progress on initiation mechanism of local corrosion induced by inclusions in low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 746
11 刘 超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 746
12 Jiang J. Effect of aging treatment on corrosion resistance of Cu-bearing stainless steels [D]. Nanjing: Nanjing University of Science & Technology, 2017
12 江 杰. 时效处理对含铜不锈钢耐蚀性能的影响 [D]. 南京: 南京理工大学, 2017
13 Ren L, Nan L, Yang K. Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel [J]. Mater. Des., 2011, 32: 2374
doi: 10.1016/j.matdes.2010.11.030
14 Bu Y Q, Wu Y, Lei Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Mater. Today, 2021, 46: 28
doi: 10.1016/j.mattod.2021.02.022
[1] 石践, 胡学文, 何博, 浦红, 郭锐, 汪飞. 经济型高耐候钢耐大气腐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[2] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[3] 王雷, 董俊华, 顾怀章, 柯伟. 含铜耐候钢热轧开裂现象分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 845-850.
[4] 李柯萱, 宋龙飞, 李晓荣. pH值对X100管线钢在CO32-/HCO3-溶液中的电化学与应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.
[5] 刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[6] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[7] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[8] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[9] 余德远, 刘智勇, 杜翠薇, 黄辉, 林楠. 管线钢土壤应力腐蚀开裂研究进展及展望[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[10] 石践, 胡学文, 张道刘, 曹卉丹, 何博, 浦红, 郭锐, 汪飞. 显微组织对高强耐候钢腐蚀性能的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[11] 焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 417-428.
[12] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[13] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.