Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1022-1030     CSTR: 32134.14.1005.4537.2022.330      DOI: 10.11902/1005.4537.2022.330
  研究报告 本期目录 | 过刊浏览 |
Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响
杨海峰1, 袁志钟1(), 李健2, 周乃鹏2, 高峰2
1.江苏大学材料科学与工程学院 镇江 212013
2.钢铁研究总院工程用钢研究所 北京 100081
Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere
YANG Haifeng1, YUAN Zhizhong1(), LI Jian2, ZHOU Naipeng2, GAO Feng2
1.School of Material Science and Technology, Jiangsu University, Zhenjiang 212013, China
2.Division of Engineering Steel, Central Iron & Steel Research Institute, Beijing 100081, China
全文: PDF(17152 KB)   HTML
摘要: 

通过室内干湿交替加速实验模拟热带海洋大气环境,研究了2.5Ni、2.0Ni、1.5Ni不同Ni含量的铜时效易焊接钢的腐蚀行为。采用失重法表征了实验钢的耐蚀性,采用扫描电镜 (SEM)、X射线衍射 (XRD)、电子探针 (EPMA) 和电化学测试等方法对锈层的保护性能进行分析。结果表明,在热带海洋大气环境下,3种实验钢的腐蚀速率均先增加后降低随后保持稳定,Ni含量越高腐蚀速率越低,2.5Ni实验钢腐蚀速率较1.5Ni实验钢降低25%。锈层分析表明,Ni和Cu主要富集在锈层内部,钢中添加Ni会在锈层内部生成NiFe2O4,促进γ-FeOOH相向α-FeOOH转化,使得锈层更加致密,且Ni含量越高,效果越明显,锈层的保护性越好。随着Ni含量的增加,带锈试样的自腐蚀电位以及锈层电阻随之增加,锈层可以有效抑制阳极溶解以及带电粒子的转移。

关键词 热带海洋大气铜时效易焊接钢Ni锈层耐蚀性    
Abstract

The corrosion behavior of Cu-bearing aged weldable steels with varied Ni levels of 2.5Ni, 2.0Ni and 1.5Ni was assessed via an indoor dry-wet alternating accelerated test, aiming to simulate the tropical marine atmospheric environment, by means of mass loss method, scanning electron microscopy (SEM), X-ray diffraction (XRD), electron probe microanalysis (EPMA) and electrochemical test methods. The findings demonstrate that in the simulated tropical marine atmospheric environment, the corrosion rates of the three experimental steels increase initially, then decrease and finally remain steady. Their corrosion rate decreases with increasing Ni concentration. The steel with 2.5Ni corrodes at a rate that is 25% less than that of 1.5Ni. The rust layer is rich mostly in Ni and Cu. The addition of Ni to the steel will result in the formation of NiFe2O4 in the rust layer, which favors the conversion of γ-FeOOH phase to α-FeOOH phase, thus increases the compactness of the rust layer. The higher the Ni content, the more obvious the effect, thereby, the better the protectiveness of the rust layer. The propensity for the free-corrosion potential and the resistance of the rust layer increase with the increasing Ni concentration. Therewith the rust layer can effectively inhibit the anodic dissolution and the transfer of charged particles within the rust layer.

Key wordstropical marine atmospheric environment    Copper Aging Weldable Steel    Ni    rust layer    corrosion resistance
收稿日期: 2022-10-25      32134.14.1005.4537.2022.330
ZTFLH:  TG172  
通讯作者: 袁志钟,E-mail: yzzjs@ujs.edu.cn,研究方向为金属材料热处理工艺、碳钢及合金钢强化工艺、金属材料微观组织结构等   
Corresponding author: YUAN Zhizhong, E-mail: yzzjs@ujs.edu.cn   
作者简介: 杨海峰,男,1996年生,硕士生

引用本文:

杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1022-1030.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.330      或      https://www.jcscp.org/CN/Y2023/V43/I5/1022

SampleCSiMnNiCuFe
2.5Ni0.0510.170.622.531.18Bal.
2.0Ni0.0330.180.642.061.16Bal.
1.5Ni0.0330.220.571.511.12Bal.
表1  3种实验用钢的化学成分 (mass fraction / %)
图1  2.5Ni、2.0Ni和1.5Ni的腐蚀速率和厚度损失随暴露时间的变化
图 2  3种实验钢腐蚀不同时间后锈层表面宏观形貌
图3  周浸腐蚀24和168 h后实验钢锈层的微观形貌
图4  2.0Ni钢腐蚀168 h后的宏观和微观形貌
图 5  3种实验钢腐蚀360 h后锈层的截面形貌及元素分布
图6  2.5Ni、2.0Ni和1.5Ni锈层成分XRD谱
图7  2.5Ni、2.0Ni和1.5Ni钢锈层中各物相组成所占比例
图8  2.5Ni、2.0Ni和1.5Ni钢锈层产物XPS分析
图9  2.5Ni、2.0Ni和1.5Ni钢腐蚀168和360 h后的极化曲线
Steel168 h360 h

Ecorr

mV

IcorrμA·cm-2

Ecorr

mV

IcorrμA·cm-2
2.5Ni-0.3750.377-0.3330.285
2.0Ni-0.4020.500-0.3510.310
1.5Ni-0.4200.601-0.3890.351
表2  电化学拟合结果
图10  2.5Ni、2.0Ni和1.5Ni钢腐蚀168和360 h后的EIS图及其等效电路
图11  2.5Ni、2.0Ni和1.5Ni钢阻抗谱拟合结果
1 Zhou L J, Yang S W. Atmospheric corrosion of steels for marine engineering and development of weathering steels [J]. China Metall., 2022, 32(8): 7
1 周鲁军, 杨善武. 海洋工程用钢的大气腐蚀与耐候钢的发展 [J]. 中国冶金, 2022, 32(8): 7
2 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
2 崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
3 Yang J W, Cai N, Jiang S, et al. Corrosion behavior of Ni, Cr-containing corrosion resistant steel in high temperature and high Cl- environment [J]. Corros. Prot., 2022, 43(4): 13
3 杨建炜, 蔡 宁, 姜 杉 等. 高温高Cl-环境中含Ni、Cr耐蚀钢的腐蚀行为 [J]. 腐蚀与防护, 2022, 43(4): 13
4 Zhao Y, Cao J Y, Fang Z G, et al. Corrosion behavior of A517Gr.Q marine steel in simulated corrosive condition of marine splashing zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 921
4 赵 伊, 曹京宜, 方志刚 等. A517Gr.Q海工钢在模拟海洋飞溅区的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 921
5 Wang W J. The application status and perspective of alloys for high performance and advanced naval vessels [J]. Mater. Rep., 2013, 27(7): 98
5 王文杰. 高性能先进舰船用合金材料的应用现状及展望 [J]. 材料导报, 2013, 27(7): 98
6 Yang C F, Zhang Y Q. Effect of Cu content on mechanical properties of low carbon HSLA steel [J]. Spec. Steel, 1999, 20(1): 27
6 杨才福, 张永权. 铜含量对低碳HSLA钢力学性能的影响 [J]. 特殊钢, 1999, 20(1): 27
7 Hwang G C, Lee S, Yoo J Y, et al. Effect of direct quenching on microstructure and mechanical properties of copper-bearing high-strength alloy steels [J]. Mater. Sci. Eng., 1998, 252A: 256
8 Yang C F, Su H, Li L, et al. Enrichment of Cu, Ni in surface oxidation layer of copper-bearing age-hardening steel [J]. Iron Steel, 2007, 42(4): 57
8 杨才福, 苏 航, 李 丽 等. Cu、Ni在含铜时效钢表面氧化层中的富集 [J]. 钢铁, 2007, 42(4): 57
9 Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
doi: 10.1016/j.actamat.2013.06.040
10 Yin L, Sampson E, Nakano J, et al. The effects of Nickel/Tin ratio on Cu induced surface hot shortness in Fe [J]. Oxid. Met., 2011, 76: 367
doi: 10.1007/s11085-011-9261-7
11 Zhao X M, Kang Y L, Han Q H. Influence of Mo on dynamic continuous cooling transformation of 1000 MPa cold rolled dual phase steel [J]. J. Iron Steel Res. Int., 2011, 18(suppl. 1): 296
12 Díaz I, Cano H, Lopesino P, et al. Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments [J]. Corros. Sci., 2018, 141: 146
doi: 10.1016/j.corsci.2018.06.039
13 Zhang P H, Li X C, Tong H T, et al. Corrosion behavior of 10CrNi3MoV steel in deep-sea environment of Western Pacific [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1075
13 张彭辉, 李显超, 仝宏涛 等. 10CrNi3MoV钢在西太平洋深海环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1075
doi: 10.11902/1005.4537.2021.328
14 Feng X G, Lu X Y, Zuo Y, et al. The effect of deformation on metastable pitting of 304 stainless steel in chloride contaminated concrete pore solution [J]. Corros. Sci., 2016, 103: 223
doi: 10.1016/j.corsci.2015.11.022
15 Zhang T Y, Liu W, Chen L J, et al. On how the corrosion behavior and the functions of Cu, Ni and Mo of the weathering steel in environments with different NaCl concentrations [J]. Corros. Sci., 2021, 192: 109851
doi: 10.1016/j.corsci.2021.109851
16 Fan Y M. Corrosion behavior and mechanism of Ni-Mo low alloy steels in tropical marine atmosphere [D]. Beijing: University of Science and Technology Beijing, 2021
16 范玥铭. Ni-Mo低合金钢热带海洋大气环境腐蚀行为和机理研究 [D]. 北京: 北京科技大学, 2021
17 Wu W, Zeng Z P, Cheng X Q, et al. Atmospheric corrosion behavior and mechanism of a Ni-advanced weathering steel in simulated tropical marine environment [J]. J. Mater. Eng. Perform., 2017, 26: 6075
doi: 10.1007/s11665-017-3043-6
18 Cheng D Y, Zhao J B, Liu B, et al. Corrosion Behavior of high nickel and conventional weathering steels exposed to a harsh marine atmospheric environment at Maldives [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 29
18 程多云, 赵晋斌, 刘 波 等. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 29
doi: 10.11902/1005.4537.2018.125
19 Jin S, Liu C M, Lin X, et al. Effect of inorganic anions on the corrosion behavior of UNS S32750 duplex stainless steel in chloride solution [J]. Mater. Corros., 2015, 66: 1077
20 Cano H, Neff D, Morcillo M, et al. Characterization of corrosion products formed on Ni 2.4%-Cu 0.5%-Cr 0.5% weathering steel exposed in marine atmospheres [J]. Corros. Sci., 2014, 87: 438
doi: 10.1016/j.corsci.2014.07.011
21 Liu Y W, Zhao H T, Wang Z Y. Initial corrosion behavior of carbon steel and weathering steel in Nansha marine atmosphere [J]. Acta Metall. Sin., 2020, 56: 1247
21 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1247
22 Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
22 万 晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851
23 Wu W, Hao W K, Liu Z Y, et al. Corrosion behavior of E690 high-strength steel in alternating wet-dry marine environment with different pH values [J]. J. Mater. Eng. Perform., 2015, 24: 4636
doi: 10.1007/s11665-015-1781-x
24 Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review [J]. Corros. Sci., 2013, 77: 6
doi: 10.1016/j.corsci.2013.08.021
25 Wang Z F, Liu J R, Wu L X, et al. Study of the corrosion behavior of weathering steels in atmospheric environments [J]. Corros. Sci., 2013, 67: 1
doi: 10.1016/j.corsci.2012.09.020
26 Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
27 Jia J H, Wu W, Cheng X Q, et al. Ni-advanced weathering steels in Maldives for two years: Corrosion results of tropical marine field test [J]. Constr. Build. Mater., 2020, 245: 118463
doi: 10.1016/j.conbuildmat.2020.118463
[1] 胡杰珍, 蓝文杰, 邓培昌, 吴敬权, 曾俊昊. E690钢在热带海洋大气环境下的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[2] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[3] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[4] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[5] 郭涛, 黄峰, 胡骞, 刘静. 9Ni钢铸坯在900~1250 ℃空气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[6] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[7] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[8] 杨新宇, 李祯, 段体岗, 黄国胜, 马力, 刘峰, 姜丹. 70Cu-30Ni合金管FeSO4预成膜及冲刷腐蚀行为分析[J]. 中国腐蚀与防护学报, 2023, 43(3): 561-568.
[9] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[10] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[11] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[12] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[13] 江杰, 姜建军, 杨丽景, 雷步芳, 赵宇, 林建强, 宋振纶. 烧结NdFeB表面Zn-Al涂层制备及耐腐蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 104-110.
[14] 任延杰, 吕云蕾, 戴汀, 郭晓慧, 陈荐, 周立波, 邱玮, 牛焱. 三元Co-Ni-Al合金在800~1000 ℃纯氧中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[15] 李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 966-972.