Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 69-76     CSTR: 32134.14.1005.4537.2022.013      DOI: 10.11902/1005.4537.2022.013
  研究报告 本期目录 | 过刊浏览 |
317L/FH40复合板在不同温度下摩擦-腐蚀耦合作用机理研究
孙士斌1, 赵子铭1, 高珍鹏2, 宫旭辉2, 王东胜3, 强强1, 常雪婷3()
1.上海海事大学物流工程学院 上海 201306
2.中国船舶重工集团第七二五研究所 洛阳 471000
3.上海海事大学海洋科学与工程学院 上海 201306
Friction-corrosion Performance of Steels and Their Welding Zone for Composite Plate of 317L Stainless Steel/FH40 Low-temperature Marine Steel in Simulated Sea Waters at Different Temperatures
SUN Shibin1, ZHAO Ziming1, GAO Zhenpeng2, GONG Xuhui2, WANG Dongsheng3, QIANG Qiang1, CHANG Xueting3()
1.Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China
2.Luoyang Ship Material Research Institute, Luoyang 471000, China
3.School of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
全文: PDF(11417 KB)   HTML
摘要: 

针对在极地环境使用的特殊海水-海冰摩擦-腐蚀耦合作用环境,使用UMT-2型多功能摩擦磨损实验机分别测试了新型FH40级低温钢板、抗海水腐蚀性能优异的317L不锈钢以及两种钢板焊接部位在不同条件下的往复摩擦-腐蚀耦合行为;使用金相显微镜、白光干涉仪以及扫描电子显微镜表征了钢样的显微组织形貌和磨痕形貌。结果表明:随着环境温度从20 ℃降低到-20 ℃,FH40钢及焊缝处的摩擦系数和磨损量都明显增加,而317L不锈钢变化不大;值得关注的是,在海水环境中进行摩擦测试时,可见317L不锈钢的整体损失量远远低于FH40钢及焊缝处的,证明317L不锈钢可应用于极地破冰船船体外表面。另外,使用电化学阻抗、极化技术测试了钢材耐蚀性能,以期确定低温环境对复合钢板耐蚀性的影响。结果证明复合板焊缝处在常温及低温条件下,腐蚀速率皆低于FH40低温钢,两种钢板复合仍保持良好耐蚀性。

关键词 不锈钢低温钢摩擦磨损低温不锈钢复合板    
Abstract

The performance of friction and corrosion of FH40 steel, 317L stainless steel and their welding zone of the explosive formed composite plate of FH40 steel/317L stainless steel was studied via UMT-2 multifunctional friction-wear tester with a grinding ball of alumina (Al2O3) in simulated environments of sea water and sea ice, respectively at different temperatures. Their microstructure and wear morphology were characterized by metallographic microscope, white light interferometer and scanning electron microscope. The results showed that with the decrease of temperature, from 20 ℃ to -20 ℃, the friction coefficient and wear loss of FH40 steel and the welding zone increase significantly, while 317L stainless steel changed only little. It should be emphasized on that the wear and corrosion loss of 317L stainless steel is much lower than that of FH40 steel and the welding zone in sea water, which confirmed the feasibility of 317L stainless steel as the shell material for icebreaker. In addition, the corrosion resistance of the steels was also assessed by means of measurements of electrochemical impedance and polarization curves in order to determine the effect of low temperature environment on the corrosion resistance of composite steel plate. The results showed that the corrosion rate of the welding zone was lower than FH40 steel both at room temperature and low temperature.

Key wordsstainless steel    FH40 steel    friction and wear    low temperature    clad sheet
收稿日期: 2022-01-09      32134.14.1005.4537.2022.013
ZTFLH:  TG174  
基金资助:上海市科委技术标准项目(21DZ2205700);上海市教委“曙光”计划(19SG46);科技部国际合作交流项目(CU03-29);上海深海材料工程技术中心项目(19DZ2253100)
作者简介: 孙士斌,男,1982年生,博士,副教授

引用本文:

孙士斌, 赵子铭, 高珍鹏, 宫旭辉, 王东胜, 强强, 常雪婷. 317L/FH40复合板在不同温度下摩擦-腐蚀耦合作用机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 69-76.
Shibin SUN, Ziming ZHAO, Zhenpeng GAO, Xuhui GONG, Dongsheng WANG, Qiang QIANG, Xueting CHANG. Friction-corrosion Performance of Steels and Their Welding Zone for Composite Plate of 317L Stainless Steel/FH40 Low-temperature Marine Steel in Simulated Sea Waters at Different Temperatures. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 69-76.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.013      或      https://www.jcscp.org/CN/Y2023/V43/I1/69

图1  实验所用复合钢板金相及取样方法
图2  FH40低温船用钢材及317L不锈钢金相形貌
图3  FH40低温钢、焊缝处与317L不锈钢在不同温度/介质条件下的摩擦系数
SampleFH40Weld joint317L
20 ℃0.850.541.00
-5 ℃0.900.351.34
-20 ℃0.930.691.34
3.5%NaCl0.291.011.22
表1  FH40低温钢、317L不锈钢及焊缝处在不同温度/介质条件下的平均摩擦系数
图4  FH40低温钢、焊缝处及317L不锈钢磨痕轮廓与磨损量
图5  焊缝处磨痕形貌SEM照片
图6  不同温度/介质条件下焊缝处磨痕形貌
图7  FH40低温钢、焊缝处及317L不锈钢在海水中的开路电位
图8  复合钢板海水腐蚀电化学阻抗拟合电路示意图及不同腐蚀周期阻抗谱
SampleRS / Ω·cm²QfnRf / Ω·cm²QdnRt / Ω·cm²
FH4011.3842.180.8219.1515.64×10-40.661488
Weld7.42612.990.7124.9117.66×10-40.721398
317L9.2811.410.7335673.33×10-40.563.01×104
表2  海水腐蚀10 d后等效电路拟合参数
图9  海水腐蚀10 d后动电位极化曲线
SampleIcorrμA·cm-2EcorrVSCEβcmV·dec-1βamV·dec-1C-rate 10-4 mm·a-1
FH407.13-0.69-9235640.3
Weld4.76-0.70-1719226.9
317L1.49-0.23-1331208.4
表3  3种材料海水腐蚀10 d后的极化曲线拟合结果
1 Lang S Y. Development trend and Prospect of polar ships [J]. Mar. Equip. Mater. Mark., 2018, (5): 32
1 郎舒妍. 极地船舶发展动态及展望 [J]. 船舶物资与市场, 2018, (5): 32
2 Li Z F, Han C M, Liang S S, et al. The academic evolution from the arctic shipping routes to "Polar Silk Road" [J]. J. Beijing Jiaotong Univ. Soc. Sci. Ed., 2021, 20(4): 78
2 李振福, 韩春美, 梁珊珊 等. 北极航线到“冰上丝绸之路”的学术演进 [J]. 北京交通大学学报 (社会科学版), 2021, 20(4): 78
3 Chen M Y. Opening and utilization of Arctic waterway [J]. Straits Sci., 2018, (5): 3
3 陈明义. 北极航道的开通和利用 [J]. 海峡科学, 2018, (5): 3
4 Qi J. Key points of low temperature steel welding [J]. China Pet. Chem. Stand. Qual., 2017, 37: 82
4 齐军. 低温钢的焊接要点 [J]. 中国石油和化工标准与质量, 2017, 37: 82
5 Li W F, Huang Y. International code for ships operating in polar waters: challenges to polar shipping safety rules in China [J]. Adv. Polar Sci., 2016, 27: 146
6 Huang Q Q. China's polar cause for 40 years [N]. China Science Daily, 2021-09-23 (6)
6 黄庆桥. 中国极地事业 40年 [N]. 中国科学报, 2021-09-23 (6)
7 Wang G D. Technological innovation and development direction of iron and steel industry [J]. Iron Steel, 2015, 50(9): 1
7 王国栋. 钢铁行业技术创新和发展方向 [J]. 钢铁, 2015, 50(9): 1
8 Zha C H, Dai Y H, Yang M M. Manufacturing technology and application of stainless steel clad plate in China [J]. Steel Rolling, 2018, 35(6): 55
8 查春和, 戴燕红, 杨梅梅. 我国不锈钢复合板材的制造技术及应用 [J]. 轧钢, 2018, 35(6): 55
9 Chen R Z. Production practice for 304+Q235B clad plate by vacuum symmetrical rolling [J]. Steel Rolling, 2018, 35(3): 19
9 陈润泽. 真空对称轧制304+Q235B复合板生产实践 [J]. 轧钢, 2018, 35(3): 19
10 Wu J Y, Sun X J, Li J, et al. Effect of heat treatments on interfaces of hot rolled Q235-TA2 clad plate with a niobium interlayer [J] J. Iron Steel Res., 2018, 30: 177
10 吴静怡, 孙新军, 李建 等. 热处理对Nb中间层热轧Q235-TA2复合板界面的影响 [J]. 钢铁研究学报, 2018, 30: 177
11 Jin H R, Han M F. Finite element simulation and experimental study on hot compression of 316L/EH40 composite sample [J]. J. Plast. Eng., 2019, 26(6): 128
11 金贺荣, 韩民峰. 316L/EH40复合样件热压缩有限元模拟与实验研究 [J]. 塑性工程学报, 2019, 26(6): 128
12 Wu B N, Guo K, Yang X Y, et al. Effect of carbon content of substrate on the microstructure changes and tensile behavior of clad layer of stainless steel composites [J]. Mater. Sci. Eng., 2022, 831A: 142201
13 Saravanan S, Raghukandan K. Microstructure, strength and welding window of aluminum alloy-stainless steel explosive cladding with different interlayers [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 91
doi: 10.1016/S1003-6326(21)65780-1
14 Li Y W, Liu H T, Wang Z J, et al. Suppression of edge cracking and improvement of ductility in high borated stainless steel composite plate fabricated by hot-roll-bonding [J]. Mater. Sci. Eng., 2018, 731A: 377
15 Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
15 张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143
16 Cheng Q D, Wang Y H. Effect of surface scratches on corrosion behavior of 304 stainless steel beneath droplets of solution (0.5 mol/L NaCl+0.25 mol/L MgCl2) [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 99
16 程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 99
17 Neville A, Hodgkiess T. An assessment of the corrosion behaviour of high-grade alloys in seawater at elevated temperature and under a high velocity impinging flow [J]. Corros. Sci., 1996, 38: 927
doi: 10.1016/0010-938X(96)00180-1
18 Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
18 伊璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288
19 Sun B Z, Zhou X C, Li X R, et al. Stress corrosion cracking behavior of 316L stainless steel with varying microstructure in ammonium chloride environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 811
19 孙宝壮, 周霄骋, 李晓荣 等. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理 [J]. 中国腐蚀与防护学报, 2021, 41: 811
20 Ding Y, Wang L W, Liu D Y, et al. Microstructure and properties of dissimilar metal welded joints of low alloy steel and duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 295
20 丁奕, 王力伟, 刘德运 等. 低合金钢与双相不锈钢异种金属焊接接头组织和性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 295
21 Wang D S, Wang S Y, Sun S B, et al. Reciprocating friction characteristics of marine arctic steel plate at dry state room temperature [J]. Surf. Technol., 2017, 46(8): 120
21 王东胜, 王士月, 孙士斌 等. 一种船用低温钢板在干态室温下的往复摩擦特性研究 [J]. 表面技术, 2017, 46(8): 120
[1] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[2] 商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[3] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[4] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[5] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[6] 刘微. 测量不锈钢电化学噪声的非对称表面方法[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[7] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[8] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[9] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[10] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[11] 王艳飞, 李耀州, 黄玉婷, 谢宏琳, 吴炜杰. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[12] 韩瑞珠, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢的热腐蚀行为及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
[13] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[14] 周文晖, 宋健, 陈泽浩, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 水热腐蚀老化对热障涂层的摩擦磨损性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 261-270.
[15] 宋健, 周文晖, 王金龙, 孙文瑶, 陈明辉, 王福会. 不同Y2O3含量的YSZ块体材料在模拟海洋环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 359-364.