|
|
电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究 |
赵海洋1,2, 高多龙1,2, 张童3, 吕由3, 张宇鹏3, 张欣欣3( ), 石鑫1,2, 魏晓静1,2, 刘冬梅1,2, 董泽华3 |
1.中国石油化工股份有限公司西北油田分公司 乌鲁木齐 830011 2.中国石化缝洞型油藏提高采收率重点实验室 乌鲁木齐 830011 3.华中科技大学化学与化工学院 武汉 430074 |
|
Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM |
ZHAO Haiyang1,2, GAO Duolong1,2, ZHANG Tong3, LV You3, ZHANG Yupeng3, ZHANG Xinxin3( ), SHI Xin1,2, WEI Xiaojing1,2, LIU Dongmei1,2, DONG Zehua3 |
1.SINOPEC Northwest Company of China Petroleum and Chemical Corporation, Urumqi 830011, China 2.Key Laboratory of Enhanced Oil Recovery in Carbonate Fractured-vuggy Reservoirs, SINOPEC, Urumqi 830011, China 3.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
引用本文:
赵海洋, 高多龙, 张童, 吕由, 张宇鹏, 张欣欣, 石鑫, 魏晓静, 刘冬梅, 董泽华. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
Haiyang ZHAO,
Duolong GAO,
Tong ZHANG,
You LV,
Yupeng ZHANG,
Xinxin ZHANG,
Xin SHI,
Xiaojing WEI,
Dongmei LIU,
Zehua DONG.
Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 621-628.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2021.149
或
https://www.jcscp.org/CN/Y2022/V42/I4/621
|
1 |
Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
|
1 |
丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
|
2 |
Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications [J]. Metall. Mater. Trans., 2012, 43A: 3325
|
3 |
Gong S L, Suo H B, Li H X. Development and application of metal Additive manufacturing technology [J]. Aeronaut. Manuf. Technol., 2013, (13): 66
|
3 |
巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 [J]. 航空制造技术, 2013, (13): 66
|
4 |
Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aeronaut. Manuf. Technol., 2016, (12): 26
|
4 |
杨强, 鲁中良, 黄福享 等. 激光增材制造技术的研究现状及发展趋势 [J]. 航空制造技术, 2016, (12): 26
|
5 |
Karabin L M, Bray G H, Rioja R J, et al. Al-Li-Cu-Mg-(Ag) products for lower wing skin applications [A]. Proceedings of the 13th International Conference on Aluminum Alloys [C]. Cham, 2012: 529
|
6 |
Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
|
6 |
林鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
|
7 |
Williams S W, Martina F, Addison A C, et al. Wire+arc additive manufacturing [J]. Mater. Sci. Technol., 2016, 32: 641
doi: 10.1179/1743284715Y.0000000073
|
8 |
Frazier W E. Metal additive manufacturing: a review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
|
9 |
Gong X B, Anderson T, Chou K, et al. Review on powder-based electron beam additive manufacturing technology [A]. ASME/ISCIE 2012 International Symposium on Flexible Automation [C]. St. Louis, 2012: 507
|
10 |
Zhang X X, Lv Y, Tan S H, et al. Microstructure and corrosion be/haviour of wire arc additive manufactured AA2024 alloy thin wall structure [J]. Corros. Sci., 2021, 186: 109453
doi: 10.1016/j.corsci.2021.109453
|
11 |
Vimal K E K, Srinivas M N, Rajak S. Wire arc additive manufacturing of aluminium alloys: a review [J]. Mater. Today: Proc., 2021, 41: 1139
|
12 |
Wang F D, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J]. Metall. Mater. Trans., 2013, 44A: 968
|
13 |
Qiao J S, Xia Z H, Liu L B, et al. Corrosion resistance of aluminum-magnesium bimetal composite material prepared by isothermal indirect extrusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 255
|
13 |
乔及森, 夏宗辉, 刘立博 等. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2021, 41: 255
|
14 |
Bartkowiak K, Ullrich S, Frick T, et al. New developments of laser processing aluminium alloys via additive manufacturing technique [J]. Phys. Proced., 2011, 12: 393
doi: 10.1016/j.phpro.2011.03.050
|
15 |
Yang X Y, Li Y, Zhao P K, et al. Research status and challenges of wire and arc additive manufacturing in material preparation [J]. Weld. Join., 2018, (8): 14
|
15 |
杨笑宇, 李言, 赵鹏康 等. 电弧增材制造技术在材料制备中的研究现状及挑战 [J]. 焊接, 2018, (8): 14
|
16 |
Moran T P, Warner D H, Phan N. Scan-by-scan part-scale thermal modelling for defect prediction in metal additive manufacturing [J]. Addit. Manuf., 2021, 37: 101667
|
17 |
Plessis A D, Yadroitsava I, Yadroitsev I. Effects of defects on mechanical properties in metal additive manufacturing: a review focusing on X-ray tomography insights [J]. Mater. Design, 2019, 187: 108385
|
18 |
Geng R W, Du J, Wei Z Y, et al. Multiscale modelling of microstructure, micro-segregation, and local mechanical properties of Al-Cu alloys in wire and arc additive manufacturing [J]. Addit. Manuf., 2020, 36: 1017
|
19 |
Zhang X X, Liu B, Zhou X R, et al. Laser welding introduced segregation and its influence on the corrosion behaviour of Al-Cu-Li alloy [J]. Corros. Sci., 2018, 135: 177
doi: 10.1016/j.corsci.2018.02.044
|
20 |
Rafieazad M, Mohammadi M, Nasiri A M. On microstructure and early stage corrosion performance of heat treated direct metal laser sintered AlSi10Mg [J]. Addit. Manuf., 2019, 28: 107
doi: 10.1016/j.addma.2019.04.023
|
21 |
Rubben T, Revilla R I, De Graeve I. Influence of heat treatments on the corrosion mechanism of additive manufactured AlSi10Mg [J]. Corros. Sci., 2019, 147: 406
doi: 10.1016/j.corsci.2018.11.038
|
22 |
Gharbi O, Jiang D, Feenstra D R, et al. On the corrosion of additively manufactured aluminium alloy AA2024 prepared by selective laser melting [J]. Corros. Sci., 2018, 143: 93
doi: 10.1016/j.corsci.2018.08.019
|
23 |
Fathi P, Mohammadi M, Duan X L, et al. A comparative study on corrosion and microstructure of direct metal laser sintered AlSi10Mg_200C and die cast A360.1 aluminum [J]. J. Mater. Process. Tech., 2018, 259: 1
doi: 10.1016/j.jmatprotec.2018.04.013
|
24 |
Wang P, Zhang Z D, Song G, et al. Analysis of laser-arc composite additive manufacturing process for aluminum alloy [J]. Weld. Technol., 2016, 45(10): 10
|
24 |
王鹏, 张兆栋, 宋刚 等. 铝合金激光-电弧复合增材制造工艺分析 [J]. 焊接技术, 2016, 45(10): 10
|
25 |
Fang X W, Zhang L J, Chen G P, et al. Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering [J]. Mater. Sci. Eng., 2021, 800A: 140168
|
26 |
Yoder J K, Griffiths R J, Yu H Z. Deformation-based additive manufacturing of 7075 aluminum with wrought-like mechanical properties [J]. Mater. Design, 2021, 198: 109288
|
27 |
Hashimoto T, Zhang X, Zhou X, et al. Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3 aluminium alloy using high resolution 2D and 3D electron imaging [J]. Corros. Sci., 2016, 103: 157
doi: 10.1016/j.corsci.2015.11.013
|
28 |
Zhang X, Hashimoto T, Lindsay J, et al. Investigation of the de-alloying behaviour of θ-phase (Al2Cu) in AA2024-T351 aluminium alloy [J]. Corros. Sci., 2016, 108: 85
doi: 10.1016/j.corsci.2016.03.003
|
29 |
Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying [J]. Nature, 2001, 410: 450
doi: 10.1038/35068529
|
30 |
Buchheit R G, Grant R P, Hlava P F, et al. Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3 [J]. J. Electrochem. Soc., 1997, 144: 2621
doi: 10.1149/1.1837874
|
31 |
Boag A, Taylor R J, Muster T H, et al. Stable pit formation on AA2024-T3 in a NaCl environment [J]. Corros. Sci., 2010, 52: 90
doi: 10.1016/j.corsci.2009.08.043
|
32 |
Boag A, Hughes A E, Glenn A M, et al. Corrosion of AA2024-T3 part I: localised corrosion of isolated IM particles [J]. Corros. Sci., 2011, 53: 17
doi: 10.1016/j.corsci.2010.09.009
|
33 |
Hashimoto T, Curioni M, Zhou X, et al. Investigation of dealloying by ultra-high-resolution nanotomography [J]. Surf. Interface Anal., 2013, 45: 1548
doi: 10.1002/sia.5176
|
34 |
Zhou X, Luo C, Hashimoto T, et al. Study of localized corrosion in AA2024 aluminium alloy using electron tomography [J]. Corros. Sci., 2012, 58: 299
doi: 10.1016/j.corsci.2012.02.001
|
35 |
Zhang X X, Zhou X R, Hashimoto T, et al. Localized corrosion in AA2024-T351 aluminium alloy: transition from intergranular corrosion to crystallographic pitting [J]. Mater. Charact., 2017, 130: 230
doi: 10.1016/j.matchar.2017.06.022
|
36 |
Szklarska-Smialowska Z. Pitting corrosion of aluminum [J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
|
37 |
Zhang X X, Jiao Y B, Yu Y, et al. Intergranular corrosion in AA2024-T3 aluminium alloy: the influence of stored energy and prediction [J]. Corros. Sci., 2019, 155: 1
doi: 10.1016/j.corsci.2019.04.031
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|