Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 605-612    DOI: 10.11902/1005.4537.2021.163
  研究报告 本期目录 | 过刊浏览 |
苯甲酸钠在酸性Zn-Ni镀液中对Zn阳极溶解行为影响的研究
刘永强1, 刘光明1(), 范文学2, 唐荣茂1, 甘鸿禹1, 师超1
1.南昌航空大学材料科学与工程学院 南昌 330063
2.安徽鼎旺环保材料科技有限公司 宣城 242000
Effect of Sodium Benzoate on Dissolution Behavior of Zn Anode in Acidic Zn-Ni Plating Bath
LIU Yongqiang1, LIU Guangming1(), FAN Wenxue2, TANG Rongmao1, GAN Hongyu1, SHI Chao1
1.School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.China Anhui Dingwang Environmental Protection Material Technology Co. Ltd., Xuancheng 242000, China
全文: PDF(3035 KB)   HTML
摘要: 

采用电化学阻抗谱 (EIS)、动电位极化曲线研究了酸性Zn-Ni镀液 (AZNB) 中苯甲酸钠 (SB) 浓度对Zn阳极溶解行为及缓蚀率的影响。结果表明,AZNB中添加SB后对 Zn的溶解具有良好抑制作用;当SB浓度在30 ~120 mg/L范围内增加时,对Zn的缓蚀效率逐渐增大;SB是一种阳极型缓蚀剂。静态腐蚀失重法研究表明,当AZNB中SB浓度相同时,温度升高,缓蚀效率降低。采用等温吸附曲线研究表明,SB在Zn阳极表面满足Langmuir等温吸附模型,温度升高使缓蚀剂分子在Zn表面的吸附平衡常数减小,导致其吸附能力降低。在不同温度条件下SB分子在Zn表面吸附是由物理吸附和化学吸附混合控制自发进行的熵增过程。

关键词 酸性Zn-Ni镀液Zn阳极苯甲酸钠缓蚀吸附    
Abstract

The influence of sodium benzoate (SB) concentration of acid Zn-Ni plating bath (AZNB) at room temperature on the dissolution behavior of Zn and corrosion inhibition effect on Zn anode was assessed by means of static corrosion mass loss method, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve measurement. The results show that the addition of SB to AZNB has a good inhibitory effect on the dissolution of Zn. With the increase of SB concentration within the range of 30-120 mg/L, the corrosion inhibition efficiency for Zn gradually increases. Therefore, SB is an anode type corrosion inhibitor. When the SB concentration of AZNB is the same, the corrosion inhibition efficiency for Zn decreases with the increasing temperature. The adsorption isotherm curve revealed that SB satisfies the Langmuir isotherm adsorption model on the surface of the Zn anode. The increase in temperature reduces the adsorption equilibrium constant of the corrosion inhibitor molecules on the Zn surface, resulting in a decrease in its adsorption capacity. The changes of thermodynamic parameters when SB adsorbed on Zn surface at different temperature show that the entropy increase process of SB corrosion inhibitor molecules on the Zn surface is controlled spontaneously by a mixture of physical adsorption and chemical adsorption.

Key wordsacidic Zn-Ni bath    Zn anode    sodium benzoate    corrosion inhibition    adsorption
收稿日期: 2021-07-13     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51961028)
通讯作者: 刘光明     E-mail: gemliu@126.com
Corresponding author: LIU Guangming     E-mail: gemliu@126.com
作者简介: 刘永强,男,1996年生,硕士生

引用本文:

刘永强, 刘光明, 范文学, 唐荣茂, 甘鸿禹, 师超. 苯甲酸钠在酸性Zn-Ni镀液中对Zn阳极溶解行为影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 605-612.
Yongqiang LIU, Guangming LIU, Wenxue FAN, Rongmao TANG, Hongyu GAN, Chao SHI. Effect of Sodium Benzoate on Dissolution Behavior of Zn Anode in Acidic Zn-Ni Plating Bath. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 605-612.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.163      或      https://www.jcscp.org/CN/Y2022/V42/I4/605

图1  酸性Zn-Ni镀液中含不同浓度SB时Zn的极化曲线
Content mg·L-1EcorrVIcorrA·cm-2βaV·dec-1-βcV·dec-1ηi %
0-1.2213.80×10-58.616.96---
30-1.175.38×10-513.2410.6760.98
60-1.044.24×10-58.977.8069.31
90-0.963.28×10-58.687.8276.29
120-0.922.73×10-59.988.3480.24
表1  酸性Zn-Ni镀液中含不同浓度SB时Zn极化曲线的拟合参数
图2  酸性Zn-Ni镀液中含不同浓度SB时Zn的电化学阻抗谱及等效电路
Content / mg·L-1Rs / Ω·cm2Q1 / 10-4S·s-n ·cm-2Qn-1Rct1 / 102 Ω·cm2Q2 / 10-4S·s-n ·cm-2Qn-2Rct2 / 102 Ω·cm2ηR / %
03.8420.680.801.597.140.794.28---
307.547.290.981.141.160.719.1542.95
605.184.720.752.351.050.8311.2556.84
905.155.020.742.971.050.8511.0958.25
1203.826.190.733.531.840.8711.8361.78
表2  酸性Zn-Ni镀液中含不同浓度SB时电化学阻抗等效电路拟合参数
图3  不同温度和浓度条件下Zn在酸性Zn-Ni镀液中的失重曲线及Zn的缓蚀率变化曲线
图4  在未添加和添加SB的酸性Zn-Ni镀液中Zn的表面形貌
图5  苯甲酸钠在Zn表面两种不同模型的等温吸附线
图6  不同温度条件下SB在Zn表面的等温吸附曲线
TemperatureKff /KLKLLinear fit equationCorrelation coefficient R2
2931.61819.0750.084c/θ=1.618c+19.0750.995
3031.68021.5350.078c/θ=1.680c+21.5350.997
3131.82324.7130.073c/θ=1.823c+24.7130.992
3232.00529.7780.067c/θ=2.005c+29.7780.996
表3  不同温度下等温吸附曲线的拟合结果
图7  SB在Zn表面吸附的lnKL/T -1的关系曲线
Temperature / KΔH0 / kJ·mol-1ΔG0 / kJ·mol-1ΔS0/ J/ mol·k
293-6.289-27.64472.883
303-6.289-28.37872.901
313-6.289-29.16773.091
323-6.289-29.85572.958
表4  不同温度条件时SB在Zn表面的热力学函数参数
图8  Zn的腐蚀溶解过程及缓蚀剂SB分子吸附的模型图
1 Chang Q H, Chen F, Chen Y F. Effect of Ni/Zn ratio in plating solution on Zn-Ni electroplating of acidic liquid [J]. Hot Work. Technol., 2009, 38(12): 99
1 苌清华, 陈峰, 陈艳芳. 镀液中镍锌含量比对酸性液电镀Zn-Ni合金的影响 [J]. 热加工工艺, 2009, 38(12): 99
2 Cao L, Zuo Z Z, Tian Z B, et al. Research status and prospect of Zn-Ni alloy electroplating [J]. Mater. Prot., 2010, 43(4): 33
2 曹浪, 左正忠, 田志斌 等. 电镀锌镍合金的研究现状与展望 [J]. 材料保护, 2010, 43(4): 33
3 Zhou X R, Wang F, Zhang K C. Effect of operating conditions on Ni content of Zn-Ni alloy deposit in acidic solution [J]. Electropl. Finish., 2007, (6): 10
3 周晓荣, 王飞, 张开诚. 酸性液电镀Zn-Ni合金的操作条件对镀层中Ni含量的影响 [J]. 电镀与涂饰, 2007, (6): 10
4 Rosliza R, Senin H B, Nik W B W. Electrochemical properties and corrosion inhibition of AA6061 in tropical seawater [J]. Colloids Surf., 2008, 312A: 185
5 Li L J, Yao Z M, Lei J L, et al. Corrosion inhibition of AZ31 magnesium alloy by sodium benzoate [J]. Mater. Prot., 2009, 42(11): 24
5 李凌杰, 姚志明, 雷惊雷 等. 苯甲酸钠对AZ31镁合金的缓蚀作用 [J]. 材料保护, 2009, 42(11): 24
6 Zhao Y, Liang P, Shi Y H, et al. Corrosion inhibition of sodium benzoate for AM60 magnesium alloys in 3.5%NaCl solution [J]. CIESC J., 2013, 64: 3714
6 赵阳, 梁平, 史艳华 等. 苯甲酸钠对AM60镁合金在氯化钠溶液中的缓蚀作用 [J]. 化工学报, 2013, 64: 3714
7 Dong R F, Wu B Z, Chen T. Corrosion behaviour of metal in antifreeze fluid containing sodium benzoate and benzotriazole [J]. J. Liaoning Univ. Sci. Technol., 2012, 35: 230
7 董荣芬, 吴宝珠, 陈涛. 防冻液中苯并三氮唑与苯甲酸钠对多种金属的缓蚀作用 [J]. 辽宁科技大学学报, 2012, 35: 230
8 Medhashree H, Shetty A N. Synergistic inhibition effect of trisodium phosphate and sodium benzoate with sodium dodecyl benzene sulphonate on the corrosion of Mg-Al-Zn-Mn alloy in 30% ethylene glycol containing chloride ions [J]. J. Adhes. Sci. Technol., 2019, 33: 523
doi: 10.1080/01694243.2018.1543529
9 Mohammed B A, Mohana K N. The effect of sodium benzoate and sodium 4-(phenylamino) benzenesulfonate on the corrosion behavior of low carbon steel [J]. Monatsh. Chem., 2009, 140: 1
doi: 10.1007/s00706-008-0018-1
10 Wang Y T, Wang K X, Gao P X, et al. Inhibition for Zn corrosion by starch grafted copolymer [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 131
10 王亚婷, 王棵旭, 高鹏翔 等. 淀粉接枝共聚物对Zn的缓蚀性能 [J]. 中国腐蚀与防护学报, 2021, 41: 131
11 Tang R M, Zhu Y C, Liu G M, et al. Gray correlative degree analysis of Q235 steel/conductive concrete corrosion in three typical soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 110
11 唐荣茂, 朱亦晨, 刘光明 等. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析 [J]. 中国腐蚀与防护学报, 2021, 41: 110
12 Wang L, Gu W, Fu W, et al. The corrosion inhibition effect of sodium dodecylbenzene sulfonate on AZ31B magnesium alloy [J]. Appl. Chem. Ind., 2020, 49: 97
12 王丽, 顾威, 付文 等. 十二烷基苯磺酸钠对AZ31B镁合金的缓释效果研究 [J]. 应用化工, 2020, 49: 97
13 Wang L Z, Li X H. Adsorption and inhibition behavior of imidazoline on steel surface in trichloroacetic acid solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 353
13 王丽姿, 李向红. 三氯乙酸溶液中咪唑啉在钢表面的吸附及缓蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 353
14 Talebian M, Raeissi K, Atapour M, et al. Inhibitive effect of sodium (E)-4-(4-nitrobenzylideneamino) benzoate on the corrosion of some metals in sodium chloride solution [J]. Appl. Surf. Sci., 2018, 447: 852
doi: 10.1016/j.apsusc.2018.04.073
15 Parveen M, Mobin M, Zehra S, et al. L-proline mixed with sodium benzoate as sustainable inhibitor for mild steel corrosion in 1M HCl: an experimental and theoretical approach [J]. Sci. Rep., 2018, 8: 7489
doi: 10.1038/s41598-018-24143-2
16 Liu M J, Wang J, Li C Y, et al. Study on adsorption thermodynamics and corrosion inhibition of sodium dodecylbenzene sulfonate on zinc in nitric acid [J]. Appl. Chem. Ind., 2007, 36: 355
16 刘明婧, 王佳, 李春颖 等. 硝酸溶液中十二烷基苯磺酸钠对锌的缓蚀作用及吸附热力学研究 [J]. 应用化工, 2007, 36: 355
17 Musa A Y, Kadhum A A H, Mohamad A B, et al. On the inhibition of mild steel corrosion by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol [J]. Corros. Sci., 2010, 52: 526
doi: 10.1016/j.corsci.2009.10.009
18 Qiang Y J, Zhang S T, Guo L, et al. Sodium dodecyl benzene sulfonate as a sustainable inhibitor for zinc corrosion in 26%NH4Cl solution [J]. J. Clean. Prod., 2017, 152: 17
doi: 10.1016/j.jclepro.2017.03.104
19 De Assunção Araújo Pereira S S, Pêgas M M, Fernández T L, et al. Inhibitory action of aqueous garlic peel extract on the corrosion of carbon steel in HCl solution [J]. Corros. Sci., 2012, 65: 360
doi: 10.1016/j.corsci.2012.08.038
20 Singh M M, Gupta A. Corrosion behavior of mild steel in acetic acid solutions [J]. Corrosion, 2000, 56: 371
doi: 10.5006/1.3280540
21 Tran T, Brown B, Nesic S, et al. Investigation of the mechanism for acetic acid corrosion of mild steel [A]. Paper Presented at the Corrosion 2013 [C]. Orlando, Florida, 2013
22 Liu S, Zhong Y, Jiang R Y, et al. Synergistic inhibition of zinc corrosion by benzotriazole in combination with sodium phosphate [J]. J. South China Univ. Technol. (Nat. Sci. Ed)., 2011, 39(1): 36
22 柳松, 钟燕, 蒋荣英 等. 苯并三氮唑和磷酸钠对锌的协同缓蚀 [J]. 华南理工大学学报 (自然科学版), 2011, 39(1): 36
23 Hu R, Su Y Y, Liu H D, et al. The effect of adding corrosion inhibitors into an electroless nickel plating bath for magnesium alloys [J]. J. Mater. Eng. Perform., 2016, 25: 4530
doi: 10.1007/s11665-016-2265-3
[1] 陈佳起, 侯道林, 肖晗, 高雨薇, 董社英. 酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[2] 张正阳, 郭子新, 周欣, 孙海静, 孙杰. 纳米埃洛石装载苯并三氮唑自修复涂层研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 705-708.
[3] 杨欣宇, 杨云天, 卢小鹏, 张涛, 王福会. 镁合金缓蚀剂研究进展[J]. 中国腐蚀与防护学报, 2022, 42(3): 435-440.
[4] 李向红, 徐昕, 雷然, 邓书端. 磷酸中核桃青皮复配缓蚀剂对冷轧钢的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2022, 42(3): 358-368.
[5] 刘永强, 刘光明, 范文学, 甘鸿禹, 唐荣茂, 师超. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[6] 王晶, 王斯琰, 张崇, 王文涛, 曹星, 樊宁, 徐宏妍. 氮掺杂对碳纳米颗粒缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[7] 唐荣茂, 刘光明, 师超, 张帮彦, 田继红, 甘鸿禹, 刘永强. 十二烷基苯磺酸钠在模拟混凝土孔隙液中对Q235钢缓蚀及吸附行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[8] 王丽姿, 黄苗, 李向红. 核桃青皮提取物与碘化钾对钢在柠檬酸中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2021, 41(6): 819-827.
[9] 胡慧慧, 陈长风. 温度影响席夫碱缓蚀剂吸附的机理研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
[10] 王鼎立, 李勇明, 蒋立明, 陈波, 骆昂. 新型表面活性剂作为油气田酸化缓蚀剂的制备及其性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 542-548.
[11] 周浩, 王胜利, 刘雪峰, 尤世界. 新型复合缓蚀剂对青铜文物的防腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[12] 谭伯川, 张胜涛, 李文坡, 向斌, 强玉杰. 食用香料1,4-二硫-2,5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[13] 王丽姿, 李向红. 三氯乙酸溶液中咪唑啉在钢表面的吸附及缓蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 353-361.
[14] 孙丹, 李伟, 魏润芝, 王胜, 韩佳星, 刘峥. 基于量子化学的2-氨基芴双希夫碱缓蚀剂的理论评价[J]. 中国腐蚀与防护学报, 2021, 41(3): 405-410.
[15] 陈文, 黄德兴, 韦奉. 铁蕨提取物对碳钢在盐酸中的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 376-382.