Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 551-562    DOI: 10.11902/1005.4537.2021.176
  研究报告 本期目录 | 过刊浏览 |
2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究
王通1,2, 孟惠民1(), 葛鹏飞1,2, 李全德1,2,3(), 巩秀芳2,3, 倪荣2,3, 姜英2,3, 龚显龙2,3, 戴君2,3, 隆彬2,3
1.北京科技大学 新材料技术研究院 北京 100083
2.长寿命高温材料国家重点实验室 德阳 618000
3.东方汽轮机有限公司 德阳 618000
Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution
WANG Tong1,2, MENG Huimin1(), GE Pengfei1,2, LI Quande1,2,3(), GONG Xiufang2,3, NI Rong2,3, JIANG Ying2,3, GONG Xianlong2,3, DAI Jun2,3, LONG Bin2,3
1.Institute of Advance Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory of Long-life High Temperature Materials, Deyang 618000, China
3.Dongfang Turbine Co. Ltd., Deyang 618000, China
全文: PDF(12795 KB)   HTML
摘要: 

通过激光共聚焦显微镜、扫描电镜 (SEM)、能谱仪 (EDS)、X射线衍射仪 (XRD)、X射线光电子能谱 (XPS)、开路电位、极化曲线、电化学阻抗谱等研究了NH4H2PO4溶液浓度对2Cr-1Ni-1.2Mo-0.2V钢电化学腐蚀行为的影响。结果表明,随着NH4H2PO4溶液浓度的增大,2Cr-1Ni-1.2Mo-0.2V钢的腐蚀速率先快速增大后缓慢增大;2Cr-1Ni-1.2Mo-0.2V钢仅在低浓度NH4H2PO4溶液中萌发点蚀,一旦溶液浓度大于或等于30 mmol/L,材料腐蚀形态仅表现为均匀腐蚀;2Cr-1Ni-1.2Mo-0.2V钢表面腐蚀产物膜为双层结构,外层膜主要由Fe3(PO4)2、FePO4组成,内层膜主要由Fe3O4构成;随着NH4H2PO4溶液浓度的增大,外层膜覆盖度及致密度均提高,内层膜中Cr、Mo出现富集,一定程度抑制材料腐蚀。

关键词 CrNiMoV钢NH4H2PO4腐蚀产物膜电化学腐蚀    
Abstract

The electrochemical corrosion behavior of 2Cr-1Ni-1.2Mo-0.2V steel in NH4H2PO4 solutions was investigated by means of open circuit potential measurement, polarization curve measurement, electrochemical impedance spectroscopy, laser scanning confocal microscopy, scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray polycrystalline diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that with the increase of NH4H2PO4 concentration, the corrosion rate of 2Cr-1Ni-1.2Mo-0.2V steel was increased rapidly at first and then slowly. Pitting corrosion occurred when the 2Cr-1Ni-1.2Mo-0.2V steel immersed in solutions of 0~1 mmol/L NH4H2PO4 for 20 h. But only uniform corrosion might occur when the steel immersed in solutions of 30-120 mmol/L NH4H2PO4 for 20 h. The corrosion product of 2Cr-1Ni-1.2Mo-0.2V steel was a two layered scale, the outer layer composed mainly of Fe3(PO4)2 and FePO4, and the inner layer composed mainly of Fe3O4. With the increase of NH4H2PO4 concentration, the coverage and compactness of the outer corrosion product layer increased, and Cr, Mo enriched in the inner corrosion product layer, thereby the corrosion resistance of 2Cr-1Ni-1.2Mo-0.2V steel was increased.

Key wordsCrNiMoV steel    NH4H2PO4    corrosion product film    electrochemical corrosion
收稿日期: 2021-07-23     
ZTFLH:  TG174  
通讯作者: 孟惠民,李全德     E-mail: menghm16@126.com;quandelee@126.com
Corresponding author: MENG Huimin,LI Quande     E-mail: menghm16@126.com;quandelee@126.com
作者简介: 王通,男,1995年,硕士生

引用本文:

王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
Tong WANG, Huimin MENG, Pengfei GE, Quande LI, Xiufang GONG, Rong NI, Ying JIANG, Xianlong GONG, Jun DAI, Bin LONG. Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 551-562.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.176      或      https://www.jcscp.org/CN/Y2022/V42/I4/551

图1  1R钢在不同浓度NH4H2PO4溶液中浸泡20 h的平均腐蚀速率
图2  1R钢在不同浓度NH4H2PO4溶液中浸泡20 h的表面腐蚀形貌
图3  图2中所选区域的三维形貌
图4  在120 mmol/L NH4H2PO4溶液中浸泡20 h后的1R钢试样表面微观形貌
SolutionSurface roughness / μmSpecific surface area
RaRqRz
30 mmol/L1.92.612.23.4
60 mmol/L1.41.910.82.1
90 mmol/L0.81.05.12.0
120 mmol/L0.70.94.71.9
表1  1R钢在30、60、90和120 mmol/L NH4H2PO4溶液中浸泡20 h后的表面粗糙度参数
FilmOPFeCrMo
Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %
Outer corrosion film51.2274.1216.9312.6631.3713.010.480.21------
Inner corrosion film6.0418.261.131.7688.7076.782.632.451.500.75
表2  在120 mmol/L NH4H2PO4溶液中浸泡20 h后的1R钢试样表面腐蚀产物EDS分析
图5  在120 mmol/L NH4H2PO4溶液中浸泡20 h后的1R钢试样表面腐蚀产物的XRD谱
图6  1R钢在不同浓度NH4H2PO4溶液中形成的内层腐蚀产物膜中Fe 2p3/2,Cr2p3/2和Mo 3d XPS图谱
ProductPeak areas (Percentage of peak area / %)
30 mmo/L60 mmo/L90 mmo/L120 mmo/L
Fe3O43954.9 (46.7)8587.6 (50.4)8173.8 (48.6)8268.6 (48.0)
Fe(OH)31326.4 (15.6)2443.3 (14.3)2400.9 (14.3)1733.0 (10.1)
Fe3(PO4)21421.0 (16.8)2676.1 (15.7)3365.0 (20.0)4425.7 (25.7)
FePO41770.4 (20.9)3347.0 (19.6)2884.4 (17.1)2801.7 (16.3)
CrO31288.6 (61.4)3148.7 (45.5)3547.3 (41.4)2642.8 (31.2)
Cr(OH)3811.4 (38.6)3765.1 (54.5)5016.2 (58.6)5815.3 (68.8)
Mo6+ 3d5/2474.7 (60)2610.9 (60)4025.0 (60)4499.5 (61.8)
Mo6+ 3d3/2316.5 (40)1740.6 (40)2683.3 (40)2778.2 (38.2)
表3  内层腐蚀产物膜中Fe 2p3/2、Cr 2p3/2、Mo 3d的XPS图谱拟合出的峰面积及其所占的比重
SolutionCFe / %CCr / %CMo / %
30 mmol/L73.722.24.1
60 mmol/L60.830.09.2
90 mmol/L53.933.412.7
120 mmol/L54.032.413.6
表4  内层腐蚀产物膜中主要元素含量
SolutionRs / Ω·cm2QfRf / Ω·cm2RL / Ω·cm2L / HQdlRct / Ω·cm2
Y0 / Ω-1·cm-2·S nnY0 / Ω-1·cm-2·S nn
0 mmol/L7.58 ×104---------------6.76 ×10-50.816.33 ×104
1 mmol/L5816---------------2.16 ×10-40.629977
30 mmol/L297.61.95 ×10-30.97203255.926475.87 ×10-40.77480.4
60 mmol/L1433.03 ×10-30.97114.342.3751.49.64 ×10-40.76331.8
90 mmol/L1033.09 ×10-30.9577.540.03257.71.02 ×10-30.76266.9
120 mmol/L80.763.37 ×10-30.9757.470.01180.41.09 ×10-30.76243.4
表5  1R钢在不同浓度NH4H2PO4溶液中的电化学阻抗谱参数
图7  1R钢在不同浓度NH4H2PO4溶液中的开路电位及不同浓度NH4H2PO4溶液的pH和电导率
图8  不同浓度NH4H2PO4溶液下1R钢的极化曲线、自腐蚀电位和自腐蚀电流密度
图9  不同浓度NH4H2PO4溶液下1R钢的电化学阻抗谱
图10  不同浓度NH4H2PO4溶液下1R钢的等效电路
1 Zhou G Y, Chen S G, Pu Q C. Technical status of industrial grade monoammonium phosphate production by WPA purification method and industrial application of its key technology [J]. Phosphate Compd. Fert., 2015, 30(3): 31
1 周贵云, 陈仕刚, 蒲秋岑. 湿法磷酸净化生产工业级磷酸一铵的技术现状及关键技术的工业应用 [J]. 磷肥与复肥, 2015, 30(3): 31
2 Lian H K, Li Y, Shu G Y Z, et al. An overview of domestic technologies for waste heat utilization [J]. Energy Conserv. Technol., 2011, 29: 123
2 连红奎, 李艳, 束光阳子 等. 我国工业余热回收利用技术综述 [J]. 节能技术, 2011, 29: 123
3 Chu X L, Zhu D S. Comprehensive utilization of low temperature waste heat resources in chemical industry [J]. Mod. Chem. Res., 2020, (15): 100
3 褚秀玲, 朱德颂. 综合利用化工行业低温余热资源 [J]. 当代化工研究, 2020, (15): 100
4 Chang H Q, Zhang Y. Application and problem analysis of industrial waste heat power generation system [J]. Energy Conserv., 2015, 34(9): 44
4 常海青, 张燕. 工业余热发电系统的应用及问题分析 [J]. 节能, 2015, 34(9): 44
5 Luo L H, Huang Y H, Xuan F Z. Pitting corrosion and stress corrosion cracking around heat affected zone in welded joint of CrNiMoV Rotor steel in Chloridized high temperature water [J]. Procedia Eng., 2015, 130: 1190
doi: 10.1016/j.proeng.2015.12.290
6 Luo L H, Huang Y H, Weng S, et al. Mechanism-related modelling of pit evaluation in the CrNiMoV steel in simulated environment of low pressure nuclear steam turbine [J]. Mater. Des., 2016, 105: 240
doi: 10.1016/j.matdes.2016.05.058
7 Luo L H, Huang Y H, Xuan F Z. Deflection behaviour of corrosion crack growth in the heat affected zone of CrNiMoV steel welded joint [J]. Corros. Sci., 2017, 121: 11
doi: 10.1016/j.corsci.2017.01.020
8 Ouyang Y Q, Huang Y H, Weng S, et al. Galvanic corrosion behavior of nuclear steam turbine welded joint in chloride environment [J]. Trans. China Weld. Inst., 2019, 40(6): 153
8 欧阳玉清, 黄毓晖, 翁硕 等. 核电汽轮机焊接转子接头在氯离子环境中的电偶腐蚀行为 [J]. 焊接学报, 2019, 40(6): 153
9 Maeng W Y, Macdonald D D. The effect of acetic acid on the stress corrosion cracking of 3.5NiCrMoV turbine steels in high temperature water [J]. Corros. Sci., 2008, 50: 2239
doi: 10.1016/j.corsci.2008.04.023
10 Turnbull A, Zhou S. Pit to crack transition in stress corrosion cracking of a steam turbine disc steel [J]. Corros. Sci., 2004, 46: 1239
doi: 10.1016/j.corsci.2003.09.017
11 Turnbull A, Zhou S, Lukaszewicz M. Environmentally assisted small crack growth [J]. Procedia Mater. Sci., 2014, 3: 204
doi: 10.1016/j.mspro.2014.06.036
12 Weng S. Study on the effect of mechanical loadings on galvanic corrosion behavior of the welded joints in the nuclear steam turbine [D]. Shanghai: East China University of Science and Technology, 2018
12 翁硕. 外力对核电汽轮机焊接转子接头电偶腐蚀行为影响的研究 [D]. 上海: 华东理工大学, 2018
13 Rosario D A, Viswanathan R, Wells C H, et al. Stress corrosion cracking of steam turbine rotors [J]. Corrosion, 1998, 54: 531
doi: 10.5006/1.3284881
14 Zhang F B, Li R, Pan X X, et al. Behaviors of corrosion and inhibition of X70 steel in (NH4)2CO3 solutions [J]. Corrros. Prot., 2005, 26(9): 375
14 张付宝, 李容, 潘献晓 等. X70钢在 (NH4)2CO3溶液中的腐蚀及缓蚀行为 [J]. 腐蚀与防护, 2005, 26(9): 375
15 Zhang E Y, Chen Y G, Tang Y B, et al. Corrosion inhibition behavior of LaFe11.6Si1.4 alloy in water solution [J]. Rare Met. Mater. Eng., 2010, 39: 1627
15 张恩耀, 陈云贵, 唐永柏 等. LaFe11.6Si1.4合金在水溶液中的缓蚀 [J]. 稀有金属材料与工程, 2010, 39: 1627
16 Hao Y W, Deng B, Zhong C, et al. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel [J]. J. Iron Steel Res. Int., 2009, 16: 68
17 Lu S L. The formation and impacting mechanism of corrosion product film of low chromium alloy steel in CO2/H2S environment [D]. Beijing: University of Science & Technology Beijing, 2018
17 卢宋乐. 含Cr低合金钢CO2/H2S环境腐蚀产物膜形成及作用机理研究 [D]. 北京: 北京科技大学, 2018
18 Li T. Enhanced phosphate removal efficiency by using ferrous iron and its mechanism [D]. Harbin: Harbin Institute of Technology, 2015
18 李婷. 亚铁强化去除水中磷酸盐的作用机制与效能 [D]. 哈尔滨: 哈尔滨工业大学, 2015
19 Long J M, Fan A M. XPS analysis of stainless steel surface in H3PO4/H2SO4 system [J]. Mater. Prot., 1994, 27(8): 24
19 龙晋明, 樊爱民. H3PO4/H2SO4体系中不锈钢表面膜的XPS分析 [J]. 材料保护, 1994, 27(8): 24
20 Li Q D, Ran D, Zhai F Q, et al. Effect of CO3 2- on the electrochemical behaviour of 14Cr12Ni3Mo2VN stainless steel in a sodium chloride solution [J]. Int. J. Electrochem. Sci., 2020, 15: 2973
21 Grosvenor A P, Kobe B A, Biesinger M C, et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds [J]. Surf. Interface Anal., 2004, 36: 1564
doi: 10.1002/sia.1984
22 Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
doi: 10.1016/j.apsusc.2011.06.077
23 Singer P C, Stumm W. Acidic mine drainage: the rate-determining step [J]. Science, 1970, 167: 1121
pmid: 17829406
24 Thistleton J, Berry T A, Pearce P, et al. Mechanisms of chemical phosphorus removal II: iron (III) salts [J]. Process Saf. Environ. Prot., 2002, 80: 265
doi: 10.1205/095758202762277623
25 De Gregorio C, Caravelli A H, Zaritzky N E. Performance and biological indicators of a laboratory-scale activated sludge reactor with phosphate simultaneous precipitation as affected by ferric chloride addition [J]. Chem. Eng. J., 2010, 165: 607
doi: 10.1016/j.cej.2010.10.004
26 Gardin E, Zanna S, Seyeux A, et al. XPS and TOF-SIMS characterization of the surface oxides on lean duplex stainless steel-global and local approaches [J]. Corros. Sci., 2019, 155: 121
doi: 10.1016/j.corsci.2019.04.039
27 Ran D, Meng H M, Liu X, et al. Effect of pH on corrosion behavior of 14Cr12Ni3WMoV stainless steel in chlorine-containing solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 51
27 冉斗, 孟惠民, 刘星 等. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 51
28 Li Y Y, Wang Z Z, Guo X P, et al. Galvanic corrosion between N80 carbon steel and 13Cr stainless steel under supercritical CO2 conditions [J]. Corros. Sci., 2019, 147: 260
doi: 10.1016/j.corsci.2018.11.025
29 Zhang X F, Wang J, Fan H Y, et al. Erosion-corrosion resistance properties of 316L austenitic stainless steels after low-temperature liquid nitriding [J]. Appl. Surf. Sci., 2018, 440: 755
doi: 10.1016/j.apsusc.2018.01.225
30 Ren G Q. The study on the electrochemical corrosion characteristics of a low-alloy steel [D]. Xi'an: Xi'an Shiyou University, 2015
30 任国琪. 一种低合金钢的电化学腐蚀行为研究 [D]. 西安: 西安石油大学, 2015
31 Ye F, Ge P L, Xu Y Y, et al. Effect of PH value on the stability of corrosion product film in H2S/CO2 environment [J]. Mater. Prot., 2020, 53(7): 55
31 叶帆, 葛鹏莉, 许艳艳 等. H2S/CO2环境中pH值对腐蚀产物膜以及腐蚀速率的影响 [J]. 材料保护, 2020, 53(7): 55
32 Li X, Chen X, Song W Q, et al. Effect of pH value on microbial corrosion behavior of X70 steel in a sea mud extract simulated solution [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 565
32 李鑫, 陈旭, 宋武琦 等. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 565
33 Liu M, Cheng X Q, Li X G, et al. Corrosion resistance mechanisms of passive films formed on low alloy rebar steels in liquor of cement extract [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 558
33 刘明, 程学群, 李晓刚 等. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究 [J]. 中国腐蚀与防护学报, 2018, 38: 558
34 Chen W J, Fang L, Pan G, et al. Corrosion evolution characteristics of Q235B steel in O3/SO2 composite atmosphere [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 450
34 陈文娟, 方莲, 潘刚 等. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性 [J]. 中国腐蚀与防护学报, 2021, 41: 450
35 He S, Sun Y J, Zhang Z H, et al. Corrosion behavior of 20# steel in alkanolamine solution mixed with ionic liquid containing saturated CO2 [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 309
35 贺三, 孙银娟, 张志浩 等. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 309
36 Zhou Q H, Zhang J D, Yang C Z. Investigation on low conductivity solutions by EIS [J]. North China Electric Power, 2000, (10): 37
36 周琼花, 张敬东, 杨昌柱. 低电导率溶液的EIS谱研究 [J]. 华北电力技术, 2000, (10): 37
37 Xu Z X, Zhou H R, Yao W. Corrosion behavior of automotive cold rolled steels DC06 and DP600 in NaHSO3 solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 155
37 徐致孝, 周和荣, 姚望. 汽车冷轧钢DC06和DP600在NaHSO3溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 155
38 Liu W, Lu S L, Zhang P, et al. Effect of silty sand with different sizes on corrosion behavior of 3Cr steel in CO2 aqueous environment [J]. Appl. Surf. Sci., 2016, 379: 163
doi: 10.1016/j.apsusc.2016.04.044
[1] 王嘉琪, 李莉, 刘婷婷. 工业建筑屋面用铝锰合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[2] 王家明, 杨昊东, 杜敏, 彭文山, 陈翰林, 郭为民, 蔺存国. B10铜镍合金在高浓度NH4+污染海水中腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 609-616.
[3] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[4] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[5] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[6] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[7] 施远,金洙吉,姜冠楠,刘作涛,周忠正,王泽北. YG15硬质合金电化学腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[8] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[9] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[10] 鲍明昱, 任呈强, 胡静思, 刘博, 李佳蒙, 王丰, 刘丽, 郭小阳. 油气管材应力诱导腐蚀电化学行为探讨[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[11] 张弟,梁平,张云霞,史艳华,秦华. 库尔勒土壤模拟溶液中形成的腐蚀产物膜对X80钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[12] 宋博强,陈旭,马贵阳,刘睿. SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[13] 汪家梅,陆辉,段振刚,张乐福,孟凡江,徐雪莲. 模拟压水堆二回路水环境中温度对690合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
[14] 董洋洋, 黄峰, 程攀, 胡骞, 刘静. X65 MS耐酸管线钢在H2S环境中腐蚀产物膜的演变[J]. 中国腐蚀与防护学报, 2015, 35(5): 386-392.
[15] 张宁,孙虎元,孙立娟,刘栓. X80管线钢在滨海滩涂土壤模拟液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.