|
|
硫酸盐还原菌对钢材腐蚀行为的研究进展 |
马刚, 顾艳红, 赵杰( ) |
北京石油化工学院机械工程学院 深水油气管线关键技术与装备北京市重点实验室 北京 102617 |
|
Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels |
MA Gang, GU Yanhong, ZHAO Jie( ) |
Beijing Key Laboratory of Key Technologies and Equipment for Deepwater Oil and Gas Pipelines, School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China |
1 |
Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfate-reducing bacteria induced corrosion [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 1
|
1 |
管方, 翟晓凡, 段继周等. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 1
|
2 |
Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
|
2 |
黄烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699
|
3 |
Xiong F P, Wang J L, Ahmed A F, et al. Research progress of sulfate-reducing bacteria induced SCC [J]. Corros. Sci. Prot. Technol., 2018, 30: 213
|
3 |
熊福平, 王军磊, Ahmed A F等. 硫酸盐还原菌诱导应力腐蚀开裂研究进展 [J]. 腐蚀科学与防护技术, 2018, 30: 213
|
4 |
Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
|
5 |
Xu P, Ren H Y, Wang C Z, et al. Research progress on mixture microbial corrosion and analytical method on metal surface [J]. Surf. Technol., 2019, 48(1): 216
|
5 |
许萍, 任恒阳, 汪长征等. 金属表面混合微生物腐蚀及分析方法研究进展 [J]. 表面技术, 2019, 48(1): 216
|
6 |
Tewary N K, Kundu A, Nandi R, et al. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel [J]. Corros. Sci., 2016, 113: 57
|
7 |
Wu M, Guo Z W, Xie F, et al. Corrosion behavior of pipeline steel under anions and sulfate-reducing bacteria: A review [J]. Mater. Rep., 2018, 32: 3435
|
7 |
吴明, 郭紫薇, 谢飞等. 阴离子和硫酸盐还原菌作用下管线钢腐蚀行为的研究进展 [J]. 材料导报, 2018, 32: 3435
|
8 |
Deng S Y, Qiu Q H. Status and prospects of bio-corrosion of steel in China [J]. Surf. Technol., 2019, 48(8): 239
|
8 |
邓绍云, 邱清华. 我国钢材生物腐蚀研究现状与展望 [J]. 表面技术, 2019, 48(8): 239
|
9 |
Liu J, Fan H B, Xu H P, et al. Corrosive electrochemical behavior of carbon steelin microbiological medium [J]. Electrochemistry, 2016, 8(2): 186
|
9 |
刘靖, 范洪波, 徐海平等. 碳钢在微生物介质中的腐蚀电化学行为 [J]. 电化学, 2016, 8(2): 186
|
10 |
Ma L, Xie J F, Xiong M X, et al. Effect of sulfate reducing bacteria on pitting behavior of carbon steel in H2S environment [J]. Corros. Prot., 2018, 39: 555
|
10 |
马磊, 谢俊峰, 熊茂县等. H2S环境中硫酸盐还原菌对碳钢点蚀行为的影响 [J]. 腐蚀与防护, 2018, 39: 555
|
11 |
Zheng M L. Study on the effect of SRB on the carbon steel’s corrosion [D]. Tianjin: Civil Aviation University of China, 2015
|
11 |
郑美露. 硫酸盐还原菌对碳钢腐蚀行为的研究 [D]. 天津: 中国民航大学, 2015
|
12 |
Fan M M, Liu H F, Dong Z H. Microbiologically influenced corrosion of X60 carbon steel in CO2-saturated oilfield flooding water [J]. Mater. Corros., 2013, 64: 242
|
13 |
Ge L, Wu M, Xie F, et al. Influence of sulfate reducing bacteria growth process on corrosion behavior of X70 steel [J]. Mater. Mechan. Eng., 2016, 40(8): 94
|
13 |
葛岚, 吴明, 谢飞等. 硫酸盐还原菌的生长过程对X70钢腐蚀行为的影响 [J]. 机械工程材料, 2016, 40(8): 94
|
14 |
Zhai F T, Li H H, Xu C M. Corrosion behavior of 2507 duplex stainless steel in cooling water with different SRB content [J]. Hot Work. Technol., 2016, 45(18): 105
|
14 |
翟芳婷, 李辉辉, 胥聪敏. 2507双相不锈钢在含硫酸盐还原菌冷却水中的腐蚀 [J]. 热加工工艺, 2016, 45(18): 105
|
15 |
Ohashi K, Kobayashi R, Stott J F D, et al. Marine crevice corrosion of stainless steel alloys under biofilmed and sterile conditions [A]. Corrosion 2016 [C]. Vancouver, British Columbia, Canada2016
|
16 |
Lv M Y, Li Z X, Du M, et al. Formation, function and evolution of biofilm in microbiologically influenced corrosion [J]. Surf. Technol., 2019, 48(11): 59
|
16 |
吕美英, 李振欣, 杜敏等. 微生物腐蚀中生物膜的生成、作用与演变 [J]. 表面技术, 2019, 48(11): 59
|
17 |
Videla H A, Herrera L K. Understanding microbial inhibition of corrosion. A comprehensive overview [J]. Int. Biodeterior. Biodegrad., 2009, 63: 896
|
18 |
Guo Z W, Guo N, Liu T, et al. Microbial corrosion inhibition mechanism and biomineralization mechanism [J]. Surf. Technol., 2018, 47(2): 144
|
18 |
郭章伟, 郭娜, 刘涛等. 微生物抑制腐蚀机理及生物矿化机理研究进展 [J]. 表面技术, 2018, 47(2): 144
|
19 |
Xu P, Zhai Y J, Wang J, et al. New perspective into biofilm: Research progress in microbially influence corrosion and measures prevention [J]. Corros. Sci. Prot. Technol., 2016, 28: 356
|
19 |
许萍, 翟羽佳, 王婧等. 从新的视角理解生物膜——微生物防腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2016, 28: 356
|
20 |
Yuan S J, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
|
21 |
Wu Y N. The exploration of the antibacterial corrosion resistance of cuprous oxide-based composite coating [D]. Wuhan: Huazhong University of Science and Technology, 2016
|
21 |
吴亚楠. 基于氧化亚铜的复合涂层的抗菌防腐性能探究 [D]. 武汉: 华中科技大学, 2016
|
22 |
Liu C P, Han X. Influence of sulfide ion on steel corrosion in CO2 containing sewage water [J]. Ind. Water Treat., 2019, 39(5): 57
|
22 |
刘春平, 韩霞. 含CO2油田采出水中S2-对碳钢腐蚀行为的影响 [J]. 工业水处理, 2019, 39(5): 57
|
23 |
Qi Y, Li J, Liang R, et al. Chemical additives affect sulfate reducing bacteria biofilm properties adsorbed on stainless steel 316L surface in circulating cooling water system [J]. Front. Environ. Sci. Eng., 2017, 11: 143
|
24 |
Shu Y, Yan M C, Wei Y H, et al. Characteristics of SRB biofilm and microbial corrosion of X80 pipeline steel [J]. Acta Metall. Sin., 2018, 54: 1408
|
24 |
舒韵, 闫茂成, 魏英华等. X80管线钢表面SRB生物膜特征及腐蚀行为 [J]. 金属学报, 2018, 54: 1408
|
25 |
Xiang L B, Zhang J C, Liu X R, et al. Microbiological influenced corrosion and microbiological influenced corrosion inhibition—overview and a case application in oilfield produced water [J]. Corros. Sci. Prot. Technol., 2019, 31: 85
|
25 |
向龙斌, 张吉昌, 刘心蕊等. 微生物腐蚀与采出水的微生物防腐蚀—回顾与应用实例 [J]. 腐蚀科学与防护技术, 2019, 31: 85
|
26 |
Yang J D, Xu F L, Hou J, et al. Research progress in microbial corrosion of metal materials and its prevention [J]. Equip. Environ. Eng., 2015, 12(1): 59
|
26 |
杨家东, 许凤玲, 侯健等. 金属材料的微生物腐蚀与防护研究进展 [J]. 装备环境工程, 2015, 12(1): 59
|
27 |
Enning D, Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem [J]. Appl. Environ. Microbiol., 2014, 80: 1226
|
28 |
Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 409
|
28 |
刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409
|
29 |
Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
|
29 |
刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195
|
30 |
Blenkinsopp S A, Khoury A E, Costerton J W. Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms [J]. Appl. Environ. Microbiol., 1992, 58: 3770
|
31 |
Xu P, Si S, Zhang Y J, et al. Effect of Extracellular Polymeric Substances (EPS) on anti-corrosion behavior of metals [J]. Corros. Prot., 2016, 37: 384
|
31 |
许萍, 司帅, 张雅君等. 微生物胞外聚合物(EPS)对金属耐蚀性的影响 [J]. 腐蚀与防护, 2016, 37: 384
|
32 |
Boukhalfa H, Reilly S D, Michalczyk R, et al. Iron(III) coordination properties of a pyoverdin siderophore produced by pseudomonas putida ATCC 33015 [J]. Inorg. Chem., 2006, 45: 5607
|
33 |
Dong Z H, Liu T F, Liu H F. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion [J]. Biofouling, 2011, 27: 487
|
34 |
Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
|
34 |
史显波, 徐大可, 闫茂成等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153
|
35 |
Zhang L, Han J L, Zhu M J, et al. Corrosion and protection of sulfate reducing bacteria to metals in marine environment [J]. China Water Trans., 2017, 17(2): 93
|
35 |
张力, 韩金陆, 祝孟洁等. 海洋环境中硫酸盐还原菌对金属的腐蚀及防护 [J]. 中国水运, 2017, 17(2): 93
|
36 |
Li X, Du M. Research progress effect of cathodic polarization on microorganism influenced corrosion [J]. Corros. Sci. Prot. Technol., 2017, 29: 561
|
36 |
李霞, 杜敏. 阴极极化对微生物腐蚀的影响研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 561
|
37 |
Cai F. Effect of sulfate reducing bacteria on casing corrosion and its control technology [J]. Construct. Mater. Decorat., 2019, (21): 146
|
37 |
蔡峰. 硫酸盐还原菌对油田套管腐蚀的影响及控制技术 [J]. 建材与装饰, 2019, (21): 146
|
38 |
Xia J, Xu D K, Nan L, et al. Study on mechanisms of microbiologically influenced corrision of metal from the perspective of bio-electrochemistry and bio-energetics [J]. Chin. J. Mater. Res., 2016, 30(3): 161
|
38 |
夏进, 徐大可, 南黎等. 从生物能量学和生物电化学角度研究金属微生物腐蚀的机理 [J]. 材料研究学报, 2016, 30(3): 161
|
39 |
Liu D, Dong H, Bishop M E, et al. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium [J]. Geobiology, 2012, 10: 150
|
40 |
Liu D, Yang C T, Zhou E Z, et al. Progress in microbiologically influenced corrosion of metallic materials in marine environment [J]. Surf. Technol., 2019, 48(7): 166
|
40 |
刘丹, 杨纯田, 周恩泽等. 海洋用金属材料的微生物腐蚀研究进展 [J]. 表面技术, 2019, 48(7): 166
|
41 |
Enning D, Venzlaff H, Garrelfs J, et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust [J]. Environ. Microbiol., 2012, 14: 1772
|
42 |
Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
|
43 |
Sun F Y, Yang X, Cao B. Effect of SRB+IOB on corrosion behavior of X100 pipeline steel in simulated solution of Yingtan soil [J]. Mater. Rep., 2019, 33(): 373
|
43 |
孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响 [J]. 材料导报, 2019, 33(): 373
|
44 |
Zheng M L. Effect of anions in soil on microbial corrosion of X70 Steel [J]. Shandong Ind. Technol., 2015, (7): 224
|
44 |
郑美露. 土壤中阴离子对X70钢微生物腐蚀的影响 [J]. 山东工业技术, 2015, (7): 224
|
45 |
Xin Z, Yu Y, Wang Y C, et al. Effect of Cl- concentration on Corrosion Behavior of 316L stainless steel in sulfate reducing bacteria system [J]. Mater. Prot., 2014, 47(5): 57
|
45 |
辛征, 于勇, 王元春等. Cl-浓度对硫酸盐还原菌体系中316L不锈钢腐蚀行为的影响 [J]. 材料保护, 2014, 47(5): 57
|
46 |
Zhang Q, Zhao X D, Li Q C, et al. Effect of Cl- concentration on corrosion behavior of Q235 steel in solution containing sulfate reducing bacteria [J]. Mechan. Eng., 2017, (6): 8
|
46 |
张倩, 赵晓栋, 李庆超等. Cl-浓度对Q235钢在含有硫酸盐还原菌的溶液中腐蚀行为的影响 [J]. 机械工程师, 2017, (6): 8
|
47 |
Meng Z J, Wu W L, Qi J H, et al. Analysis of the influence of wellbore environmental factors to SRB growth and corrosion [J]. Petrochem. Ind. Appl., 2015, 34(1): 13
|
47 |
孟章进, 吴伟林, 祁建杭等. 井筒环境因素对SRB生长及腐蚀影响分析 [J]. 石油化工应用, 2015, 34(1): 13
|
48 |
Wu T Q, Zhou Z F, Wang X M, et al. Bacteria assisted cracking of X80 pipeline steel under the actions of elastic and plastic stresses [J]. Surf. Technol., 2019, 48(7): 285
|
48 |
吴堂清, 周昭芬, 王鑫铭等. 弹塑性应力作用下X80管线钢的菌致开裂行为 [J]. 表面技术, 2019, 48(7): 285
|
49 |
Wang D, Xie F, Wu M, et al. Effect of sulfate reducing bacteria on stress corrosion cracking behavior of X80 steel [J]. Trans. Mater. Heat Treat., 2016, 37(5): 198
|
49 |
王丹, 谢飞, 吴明等. 硫酸盐还原菌对X80钢应力腐蚀开裂行为的影响 [J]. 材料热处理学报, 2016, 37(5): 198
|
50 |
Wu T Q, Xu J, Yan M C, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution [J]. Corros. Sci., 2014, 83: 38
|
51 |
Liu H W, Zhang F, Wu Y N, et al. Inhibition behavior of dodecylamine inhibitor in oilfield produced water containing saturated CO2 and SRB [J]. Corros. Prot., 2015, 36: 137
|
51 |
刘宏伟, 张帆, 吴亚楠等. 油田产出水中饱和CO2和SRB共存条件下十二胺缓蚀剂的缓蚀行为 [J]. 腐蚀与防护, 2015, 36: 137
|
52 |
Chen X, Gao F J, Song W Q, et al. Effects of CO2 on SRB influenced corrosion behavior of X70 steel in near-neutral pH solution [J]. Corros. Sci. Prot. Technol., 2017, 29: 103
|
52 |
陈旭, 高凤娇, 宋武琦等. CO2对X70钢在近中性pH值溶液中硫酸盐还原菌腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2017, 29: 103
|
53 |
Liu F L. Analysis of factors influencing corrosion of water injection system in block a of Jilin Oilfield [J]. Petrol. Knowledge, 2019, (4): 44
|
53 |
刘凤兰. 吉林油田A区块注水系统腐蚀影响因素分析 [J]. 石油知识, 2019, (4): 44
|
54 |
Liu L Y, Zhang X M, Li L, et al. Application of ultrasound sterilization technique in food industry [J]. Food Sci., 2006, 27: 778
|
54 |
刘丽艳, 张喜梅, 李琳等. 超声波杀菌技术在食品中的应用 [J]. 食品科学, 2006, 27: 778
|
55 |
Chen B, Liu H W, Wu Y N, et al. Influence of static magnetic field on microbiologically induced corrosion of Cu-Zn alloy in SRB culture medium [J]. ECS Trans., 2014, 59: 439
|
56 |
Chen B. The formation and corrosion electrochemical behavior of SRB biofilm in static magnetic field [D]. Wuhan: Huazhong University of Science and Technology, 2014
|
56 |
陈碧. 静磁场下SRB生物膜形成及腐蚀电化学行为 [D]. 武汉: 华中科技大学, 2014
|
57 |
Li K J, Zheng B J, Chen B, et al. Effect of magnetic field on microbiologically-influenced corrosion behavior of Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 463
|
57 |
李克娟, 郑碧娟, 陈碧等. 磁场对Q235钢微生物腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 463
|
58 |
Li J J, Liu Y M, Zhang X W, et al. Mechanism of metal corrosion caused by sulfate-reducing bacteria in the reinjection water in oilfields and its prevention and cure [J]. Ind. Water Treat., 2007, 27(11): 4
|
58 |
李家俊, 刘玉民, 张香文等. 油田回注水中硫酸盐还原菌对金属腐蚀的机理及其防治方法 [J]. 工业水处理, 2007, 27(11): 4
|
59 |
Xin Z. Effect of environmental factors on corrosion behavior of 316L stainless steel in medium containing sulfate reducing bacteria [D]. Yantai: Yantai University, 2014
|
59 |
辛征. 环境因素对含硫酸盐还原菌介质中316L不锈钢腐蚀行为的影响 [D]. 烟台: 烟台大学, 2014
|
60 |
Li Y Q. Present situation and development trend of fungicides used in oil field production system [J]. Chem. Eng. Des. Commun., 2016, 42(6): 21
|
60 |
李延庆. 油田生产系统用杀菌剂的现状及发展趋势 [J]. 化工设计通讯, 2016, 42(6): 21
|
61 |
Liu H W, Liu H F, Qin S, et al. Investigation of biomineralization induced by sulfate reducing bacteria in sewage gathering pipelines in oilfield [J]. Corros. Sci. Prot. Technol., 2015, 27: 7
|
61 |
刘宏伟, 刘宏芳, 秦双等. 集输管线硫酸盐还原菌诱导生物矿化作用调查 [J]. 腐蚀科学与防护技术, 2015, 27: 7
|
62 |
Kan T T, Dong B H, Zhang H, et al. Performance evaluation of the CFD corrosion inhibitor [J]. Appl. Chem. Ind., 2014, 43(): 115
|
62 |
阚涛涛, 董宝辉, 张环等. CFD油田缓蚀剂的筛选与性能评价 [J]. 应用化工, 2014, 43(): 115
|
63 |
Wang G, Duan L D, Wang H, et al. Selection and performance evaluation of corrosion inhibitor for carbon steel in oilfield produced water [J]. J. Yangtze Univ. (Nat. Sci. Ed.), 2019, 16(5): 41
|
63 |
王贵, 段立东, 王欢等. 油田采出水中碳钢腐蚀缓蚀剂的筛选与性能评价 [J]. 长江大学学报(自然科学版), 2019, 16(5): 41
|
64 |
Guo J K, Huang M H, Ma Y L. Research on the action of sulfate reducing bacteria and heterotrophic nitrification bacteria on the corrosion of 304 stainless steel [J]. Ind. Water Treat., 2016, 36(12): 70
|
64 |
郭军科, 黄美慧, 马有良. 硫酸盐还原菌和异养硝化菌对304不锈钢腐蚀研究 [J]. 工业水处理, 2016, 36(12): 70
|
65 |
Zong Y, Xie F, Wu M, et al. Research progress in influencing factors of corrosion by sulfate-reducing bacteria and corresponding antisepsis techniques [J]. Surf. Technol., 2016, 45(3): 24
|
65 |
宗月, 谢飞, 吴明等. 硫酸盐还原菌腐蚀影响因素及防腐技术的研究进展 [J]. 表面技术, 2016, 45(3): 24
|
66 |
Ding Q M, Fan Y M, Zhang Y F. Study on the cathodic protection criteria applicability of X80 steel in seawater solution containing SRB [J]. J. Marin. Sci., 2016, 34(3): 19
|
66 |
丁清苗, 范玥铭, 张迎芳. X80钢在含有SRB的海水溶液中阴极保护准则适用性 [J]. 海洋学研究, 2016, 34(3): 19
|
67 |
Li Y. Study on the antibacterial mechanism of cathodic polarization [D]. Dalian: Dalian University of Technology, 2013
|
67 |
李雨. 阴极极化的抑菌机理研究 [D]. 大连: 大连理工大学, 2013
|
68 |
Hong D H, Cao G Z, Qu J L, et al. Antibacterial activity of Cu2O and Ag co-modified rice grains-like ZnO nanocomposites [J]. J. Mater. Sci. Technol., 2018, 34: 2359
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|