|
|
FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响 |
秦越强1,2, 左勇1,2,3( ), 申淼1,3 |
1 中国科学院上海应用物理研究所 上海 201800 2 中国科学院大学 北京 100049 3 中国科学院洁净能源创新研究院 大连 116023 |
|
Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System |
QIN Yueqiang1,2, ZUO Yong1,2,3( ), SHEN Miao1,3 |
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China |
[1] |
Romatoski R R, Hu L W. Fluoride salt coolant properties for nuclear reactor applications: A review [J]. Ann. Nucl. Energy, 2017, 109: 635
|
[2] |
MacPherson H G. The molten salt reactor adventure [J]. Nucl. Sci. Eng., 1985, 90: 374
|
[3] |
Vignarooban K, Xu X H, Arvay A, et al. Heat transfer fluids for concentrating solar power systems-A review [J]. Appl. Energy, 2015, 146: 383
|
[4] |
Patel N S, Pavlík V, Boča M. High-temperature corrosion behavior of superalloys in molten salts-a review [J]. Crit. Rev. Solid State Mater. Sci., 2017, 42: 83
|
[5] |
McCoy H E, Beatty R L, Cook W H, et al. New developments in materials for molten-salt reactors [J]. Nucl. Appl. Technol., 1970, 8: 156
|
[6] |
Liu M, Zheng J Y, Lu Y L, et al. Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques [J]. J. Nucl. Mater., 2013, 440: 124
|
[7] |
Fu C T, Wang Y L, Chu X W, et al. Grain boundary engineering for control of tellurium diffusion in GH3535 alloy [J]. J. Nucl. Mater., 2017, 497: 76
|
[8] |
Zhu Y S, Qiu J, Hou J, et al. Effects of SO42- ions on the corrosion of GH3535 weld joint in FLiNaK molten salt [J]. J. Nucl. Mater., 2017, 492: 122
|
[9] |
Wang Y L, Liu H J, Yu G J, et al. Electrochemical study of the corrosion of a Ni-based alloy GH3535 in molten (Li, Na, K)F at 700 ℃ [J]. J. Fluor. Chem., 2015, 178: 14
|
[10] |
Sellers R S, Cheng W J, Kelleher B C, et al. Corrosion of 316L stainless steel alloy and hastelloy-N superalloy in molten eutectic LiF-NaF-KF salt and interaction with graphite [J]. Nucl. Technol., 2014, 188: 192
|
[11] |
Maric M, Muránsky O, Karatchevtseva I, et al. The effect of cold-rolling on the microstructure and corrosion behaviour of 316L alloy in FLiNaK molten salt [J]. Corros. Sci., 2018, 142: 133
|
[12] |
Yin H Q, Qiu J, Liu H J, et al. Effect of CrF3 on the corrosion behaviour of Hastelloy-N and 316L stainless steel alloys in FLiNaK molten salt [J]. Corros. Sci., 2018, 131: 355
|
[13] |
Ding X B, Sun H, Yu G J, et al. Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 543
|
[13] |
(丁祥彬, 孙华, 俞国军等. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 543)
|
[14] |
Gibilaro M, Massot L, Chamelot P. A way to limit the corrosion in the Molten Salt Reactor concept: the salt redox potential control [J]. Electrochim. Acta, 2015, 160: 209
|
[15] |
Guo S Q, Shay N, Wang Y F, et al. Measurement of europium (III)/europium (II) couple in fluoride molten salt for redox control in a molten salt reactor concept [J]. J. Nucl. Mater., 2017, 496: 197
|
[16] |
Zhang J S, Forsberg C W, Simpson M F, et al. Redox potential control in molten salt systems for corrosion mitigation [J]. Corros. Sci., 2018, 144: 44
|
[17] |
McCafferty E. Validation of corrosion rates measured by the Tafel extrapolation method [J]. Corros. Sci., 2005, 47: 3202
|
[18] |
Wang Y L, Wang Q, Liu H J, et al. Effects of the oxidants H2O and CrF3 on the corrosion of pure metals in molten (Li, Na, K)F [J]. Corros. Sci., 2016, 103: 268
|
[19] |
Peng H, Shen H, Wang C Y, et al. Electrochemical investigation of the stable chromium species in molten FLINAK [J]. RSC Adv., 2015, 5: 76689
|
[20] |
Mirkin M V, Bard A J. Simple analysis of quasi-reversible steady-state voltammograms [J]. Anal. Chem., 1992, 64: 2293
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|