Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (3): 212-218    DOI: 10.11902/1005.4537.2015.116
  研究报告 本期目录 | 过刊浏览 |
SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响
宋博强,陈旭(),马贵阳,刘睿
辽宁石油化工大学石油天然气工程学院 抚顺 113001
Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution
Boqiang SONG,Xu CHEN(),Guiyang MA,Rui LIU
School of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(980 KB)   HTML
摘要: 

采用电化学阻抗、动电位极化及微观观察法,对比了有、无硫酸盐还原菌 (SRB) 的情况下X70管线钢在近中性pH溶液 (NS4) 中的腐蚀行为,研究了SRB生长周期对X70钢腐蚀行为的影响。结果表明:X70钢在无菌溶液中腐蚀速率随时间增加呈单一增大的趋势。SRB在NS4溶液中的生长周期分为对数繁殖期 (1~3 d),稳定生长期 (4~7 d) 和衰亡期 (7~14 d) 3个阶段。SRB对X70钢在NS4溶液中腐蚀速率的影响与其在溶液中生长规律有关:当SRB处于对数繁殖期和稳定期时,X70钢表面覆盖一层致密的生物膜,对钢起到了保护作用,此时X70钢的腐蚀速率比无菌条件下低;当SRB进入衰亡期,X70钢腐蚀的程度比无菌介质中严重,钢表面腐蚀产物逐渐增多,生物膜出现破裂,腐蚀速率增大。

关键词 X70管线钢硫酸盐还原菌生长周期电化学腐蚀    
Abstract

The corrosion behavior of X70 pipeline steel in a near-neutral pH solution NS4 with and without sulfate-reducing bacteria (SRB) respectively was studied by means of electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and microscopic observation. The results showed that the corrosion rate of X70 steel increased with time in NS4 solution without SRB; The growth process of the SRB in the solution NS4 can be divided into three phases: logarithmic phase (1~3 d), stable growth phase (4~7 d) and death phase (7~14 d). The influence of SRB on the corrosion rate of X70 pipeline steel in the solution NS4 with SRB was related to the growth process of SRB. A compact biological film could form on the steel surface in the stage of logarithmic phase and stable growth phase, which was conducive to enhancing the protectiveness of corrosion products on the steel and therewith the corrosion rate of X70 steel in the NS4 with SRB was lower than that without SRB. While the corrosion of X70 steel in the NS4 with SRB in the death phase was more serious than that without SRB, while the scale of corrosion products became thicker gradually, then the biological film broken and therewith the corrosion rate increased.

Key wordsX70 pipeline steel    sulfate reducing bacteria    growth cycle    electrochemical corrosion
收稿日期: 2015-08-24     
基金资助:国家自然科学基金项目(51201009)和辽宁省自然科学基金项目 (2013020078) 资助

引用本文:

宋博强,陈旭,马贵阳,刘睿. SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
Boqiang SONG, Xu CHEN, Guiyang MA, Rui LIU. Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 212-218.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.116      或      https://www.jcscp.org/CN/Y2016/V36/I3/212

图1  X70钢的微观组织
图2  OD值法测得的SRB在NS4溶液中的生长曲线
图3  X70钢在NS4溶液中浸泡不同时间除锈后的表面形貌
图4  X70钢在有、无菌介质中的自腐蚀电位随时间的变化曲线
图5  X70钢在无菌介质中浸泡不同时间的Nyqusit图和Bode图
图6  X70钢在有菌介质中浸泡不同时间的Nyqusit图和Bode图
图7  有、无菌浸泡不同时间等效电路
Condition Time / d Rs / Ωcm2 Qf / μFcm-2 nf Rf / Ωcm2 Qdl / μFcm-2 ndl Rt / Ωcm2
Without SRB 1 40.96 --- --- --- 2.859×10-4 0.8455 1.7×104
4 43.86 --- --- --- 3.021×10-4 0.8232 1.4×104
7 36.35 --- --- --- 2.659×10-4 0.8118 1.1×104
10 55.21 --- --- --- 0.8366×10-4 0.8562 1.03×104
14 49.66 --- --- --- 3.072×10-4 0.8016 8.1×103
With SRB 1 155.8 17.77×10-4 0.46 1.192 0.61×10-4 1 1.2×103
4 117.9 2.646×10-4 1 69.08 26.39×10-4 0.6047 1.6×103
7 88.93 2.408×10-4 1 337.3 7.843×10-4 1 926
10 76.75 10.52×10-4 1 198.3 48.18×10-4 1 500
14 91.1 12.07×10-4 1 125.2 114.6×10-4 1 425
表1  X70钢在有菌和无菌介质中的电化学参数随浸泡时间的变化
图8  X70钢在NS4溶液中浸泡不同时间的极化曲线
Condition Ecorr / mV Icorr / μAcm-2
Without SRB / 4 d -754.8 3.432
With SRB / 4 d -721.0 1.856
Without SRB / 14 d -813.9 21.151
With SRB / 14 d -856.0 30.650
表2  极化曲线的拟合结果
[1] Xia S H, Qi M Y, Li J X.Corrosion mechanism of MIC and influences on corrosion and protection of underground pipeline[J]. Total Corros. Control, 2005, 19(3): 27
[1] (夏双辉, 戚明友, 李建秀. 微生物腐蚀机理及对埋地管道腐蚀防护的影响[J]. 全面腐蚀防制, 2005, 19(3): 27)
[2] Zhang Y, Li Y.Microbiological corrosion and protection of oil and gas pipeline[J]. Equip. Environ. Eng., 2008, 5(5): 45
[2] (张燕, 李颖. 输油气管线的微生物腐蚀与防护[J]. 装备环境工程, 2008, 5(5): 45)
[3] Matilde F R, Junire P, Rosemary R.Cathodic polarization effect on sessile SRB growth and iron protection [A]. Corrosion/2006[C]. Las Vegas, 2006: 06526
[4] Graves J W, Sullivan E H.Internal corrosion in gas gathering systems and transmission lines[J]. Mater. Prot., 1996, 5: 33
[5] Zhao L C, Sun C, Zhang F B, et al.Kinetics analysis of naphthenic acid corrosion in atmospheric and vacuum equipment[J]. Corros. Sci. Prot. Technol., 2007, 19(1): 27
[5] (赵力成, 孙成, 张付宝等. SRB对X70管线钢在污染土壤中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2007, 19(1): 27)
[6] Zhu R X, Na J Y, Guo S W, et al.The corrosion mechanism of sulfate reducing bacteria[J]. J. Air Force Eng. Univ.(Nat. Sci. Ed.), 2000, 1(3): 10
[6] (朱绒霞, 那静彦, 郭生武等. 硫酸盐还原菌的腐蚀机理[J]. 空军工程大学学报 (自然科学版), 2000, 1(3): 10)
[7] Souad B, Mohamed A L, Samir H.Effect of biofilm on naval steel corrosion in natural seawater[J]. J. Solid State Electrochem., 2011, 15(3): 525
[8] Fan Y J, Pi Z B, Hua P, et al.Microbial corrosion and its research methods[J]. Mater. Prot., 2001, 34(5): 28
[9] Jia S Y, Sun C, Wang J, et al.Research on corrosion of pipeline steel beneath disbanded coatings[J]. Corros. Sci. Prot. Technol., 2007, 19(3): 211
[9] (贾思洋, 孙成, 王佳等. 剥离涂层下管线钢腐蚀研究进展[J]. 腐蚀科学与防护技术, 2007, 19(3): 211)
[10] Liu W, Zhao Y L, Lu M X.Corrosion electrochemical characteristics of X60 pipeline steel in SRB and CO2 coexistence environment[J] Acta Phys.-Chim. Sin., 2008, 24(3): 393
[10] (柳伟, 赵艳亮, 路民旭. SRB和CO2共存环境中X60管线钢腐蚀电化学特征[J]. 物理化学学报,2008, 24(3): 393)
[11] Li J, Xu Z Y, Du Y L, et al.Influence of sulfate reducing bacteria on corrosive electrochemical behavior of copper alloy[J]. J. Chin. Soc. Corros. Prot., 2007, 27(6): 342
[11] (李进, 许兆义, 杜一立等. 硫酸盐还原菌对铜合金腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2007, 27(6): 342)
[12] Yuan H T, Gong A J, Gao J, et al.The research progress of SRB microbial corrosion and protection[J]. Chem. Bioeng., 2009, 5(1): 11
[12] (苑海涛, 弓爱君, 高瑾等. 硫酸盐还原菌的微生物腐蚀及其防护研究进展[J]. 化学与生物工程, 2009, 5(1): 11)
[13] Li F Z, An M Z.The effect of SRB biofilm in the process of stainless steel corrosion[J]. Mater. Prot., 2012, 45(1): 27
[13] (李付绍, 安茂忠. 硫酸盐还原菌生物膜在不锈钢腐蚀过程中的作用[J]. 材料保护, 2012, 45(1): 27)
[14] Liu T, Chen X, Zhang Y F, et al.Effect of SRB on corrosion behavior of X70 steel in a simulated soil solution[J]. J. Chin. Soc. Corros. Prot., 2014, 34(2): 113
[14] (刘彤, 陈旭, 张艳飞等. SRB对X70钢在土壤模拟溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(2): 113)
[15] Chen X, Wu M.Effect of applied potential on SCC of X80 pipeline steel and its weld joint in Ku'erle soil simulated solution[J]. Acta Metall. Sin., 2010, 46(8): 951
[15] (陈旭, 吴明. 外加电位对X80钢及其焊缝在库尔勒土壤模拟溶液中SCC行为的影响[J]. 金属学报, 2010, 46(8): 951)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[5] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[6] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[7] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[8] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[9] 施远,金洙吉,姜冠楠,刘作涛,周忠正,王泽北. YG15硬质合金电化学腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[10] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[11] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[12] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[13] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[14] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[15] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.