Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (3): 197-204    DOI: 10.11902/1005.4537.2015.089
  研究报告 本期目录 | 过刊浏览 |
高氮奥氏体不锈钢的腐蚀行为研究
吴欣强1(),付尧1,柯伟1,徐松2,冯兵2,胡波涛2,陆佳政2
1. 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室辽宁省核电材料安全与评价技术重点实验室 沈阳 110016
2. 湖南省电力公司科学研究院 长沙 410007
Corrosion Behavior of High Nitrogen Austenitic Stainless Steels
Xinqiang WU1(),Yao FU1,Wei KE1,Song XU2,Bing FENG2,Botao HU2,Jiazheng LU2
1. Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Material, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Hunan Electric Power Corporation Research Institute, Changsha 410007, China
全文: PDF(1120 KB)   HTML
摘要: 

研究了无镍高氮高锰奥氏体不锈钢 (HNSSs) 的均匀腐蚀、晶间腐蚀、缝隙腐蚀、点蚀性能及再钝化性能;与商用316L不锈钢 (316LSS) 对比,考察了冷变形、敏化处理等对HNSSs的微观组织、钝化膜特征及耐蚀性的影响。结果表明:固溶HNSSs的均匀腐蚀和晶间腐蚀抗力明显不如316LSS的,敏化处理不影响钢的均匀腐蚀抗力,但导致晶间腐蚀抗力急剧弱化,尤其是无Mo钢;固溶HNSSs的缝隙腐蚀和点蚀抗力优于316LSS的,特别是含Mo钢,敏化处理导致钢的缝隙腐蚀和点蚀抗力弱化;冷变形引入大量微观缺陷,导致钝化膜变薄,膜中稳定氧化物减少,保护性变差,降低了HNSSs在含Cl-溶液中的点蚀抗力,但改善了其再钝化性能;敏化析出χ相,导致HNSSs的耐蚀性下降,再钝化性能劣化,且随冷变形量增加更为显著。并讨论了HNSSs的腐蚀机理。

关键词 高氮不锈钢冷变形敏化钝化膜再钝化    
Abstract

The corrosion performance of Ni free and Mn alloyed high nitrogen austenitic stainless steels (HNSSs), including uniform corrosion, intergranular corrosion, crevice corrosion, pitting corrosion and repassivation,was investigated by means of immersion test and electrochemical test. The effect of cold work and sensitization treatment on the microstructure, characteristic of passive film and corrosion resistance of the HNSSs was examined. It was found that the solution-annealed (SA) HNSSs had much weaker resistance to uniform- and intergranular-corrosion compared to the SA 316LSS. The sensitization-treatment (ST) hardly affected the uniform corrosion resistance of all the steels, but resulted in rapid degradation of the resistance to intergranular-corrosion, especially for the Mo free HNSSs. The SA HNSSs had a better resistance to crevice- and pitting-corrosion than the SA 316LSS, in particular the Mo bearing HNSSs. The ST degraded the resistance to crevice- and pitting-corrosion of the HNSSs. The cold work degraded the pitting-corrosion resistance of the HNSSs in chloride-containing solutions through thinning the passive film and decreasing the stable oxides in the passive film, but it improved the repassivation ability of the HNSSs. The ST-induced precipitation of χ phase degraded the corrosion resistance and repssivation ability of the HNSSs, and such degradation became aggravated with increasing cold work degree. Furthermore, the relevant corrosion mechanism is also discussed.

Key wordshigh nitrogen stainless steel    cold work    sensitization    passive film    repassivation
收稿日期: 2015-05-27     
基金资助:国家电网公司总部科技项目(KG12K16004)和中国科学院金属研究所创新基金项目资助

引用本文:

吴欣强,付尧,柯伟,徐松,冯兵,胡波涛,陆佳政. 高氮奥氏体不锈钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(3): 197-204.
Xinqiang WU, Yao FU, Wei KE, Song XU, Bing FENG, Botao HU, Jiazheng LU. Corrosion Behavior of High Nitrogen Austenitic Stainless Steels. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 197-204.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.089      或      https://www.jcscp.org/CN/Y2016/V36/I3/197

Steel Cr Ni Mn Mo Si C S P Al N Fe
HNSS A 19.80 --- 18.40 --- --- 0.040 0.012 0.015 0.02 0.82 Bal.
HNSS B 19.07 --- 18.84 2.20 --- 0.043 0.012 0.015 0.02 0.77 Bal.
HNSS C 18.40 --- 15.80 2.19 0.24 0.040 0.005 0.017 0.02 0.66 Bal.
316LSS 16.38 10.2 1.02 2.36 0.40 0.019 0.06 0.033 --- --- Bal.
表1  HNSSs及316LSS的成分
图1  不同处理条件下HNSS C的微观组织
图2  HNSSs的均匀腐蚀失重率,晶间腐蚀速率,缝隙腐蚀速率及点蚀速率
图3  浸泡实验后样品的晶间腐蚀、缝隙腐蚀和点蚀形貌
图4  HNSS C试样经固溶+冷变形和冷变形+敏化处理后的极化曲线及临界点蚀电位与冷变形量的关系
图5  冷变形HNSS C的Nyquist图和拟合等效电路
图6  HNSS C样品在3.5%NaCl溶液中形成的钝化膜中N,O,Cr和Mo浓度沿深度的分布
Condition Cold work level Rsol / Ωcm2 Q / Ω-1sncm-2 n R1 / Ωcm2 C / Fcm-2 R2 / Ωcm2
Solution-annealed,3.5%NaCl 8% 7.62 1.14×10-5 0.88 3.56 6.53×10-6 6.48×105
30% 7.33 1.20×10-5 0.83 4.01 7.79×10-6 2.53×105
60% 6.92 2.63×10-5 0.92 16.50 3.39×10-6 2.22×105
Sensitized,3.5%NaCl 8% 7.57 1.37×10-5 0.76 4.83 8.43×10-6 1.65×105
30% 6.17 8.21×10-5 0.85 10.05 1.26×10-5 1.36×105
60% 6.26 9.51×10-5 0.78 3.02 1.65×10-5 1.29×105
表2  EIS的等效电路拟合参数
Cold work level Surface layer (1 nm) Middle layer (3 nm) Inner layer (7 nm)
8% non-sensitized Cr2O3 Cr-O Cr-O
Fe3O4, Fe2O3 Fe3O4 Fe3O4
Mn2O3 MnO MnO
60% non-sensitized Cr-O Cr-O Cr-O
Fe3O4, Fe(OH)O Fe3O4 Fe3O4
Mn2O3 MnO MnO
60% sensitized Cr-O Fe3O4 Fe3O4
Fe3O4, Fe(OH)O MnO
MnO
表3  冷变形HNSS C钝化膜中氧化物组成
图7  固溶、冷变形和冷变形+敏化处理的HNSS C在3.5%NaCl溶液中的循环极化曲线
[1] Uggowitzer P J, Magdowski R, Speidel M O.Nickel free high nitrogen austenitic steels[J]. ISIJ Int., 1996, 36(7): 901
[2] Speidel M O, Speidel H J.Nitrogen containing austenitic stainless steels [A]. Proceedings of International Conference on High Nitrogen Steels 2006[C]. Jiuzhaigou: 2006
[3] Menzel J, Kirschner W, Stein G.High nitrogen containing Ni-free austenitic steels for medical applications[J]. ISIJ Int., 1996, 36(7): 893
[4] Flis J.Corrosion and passivation of plasma nitrided stainless steels[J]. Surf. Eng., 2010, 26: 103
[5] Flis F, Zakroczymski T.Corrosion and passivation of iron and its nitrided layer in borate buffer[J]. Electrochim. Acta, 2009, 54: 1810
[6] Baba H, Kodama T, Katada Y.Role of nitrogen on the corrosion behavior of austenitic stainless steels[J]. Corros. Sci., 2002, 44(10): 2393
[7] Fu Y, Wu X Q, Han E-H, et al.Effects of nitrogen on the passivation of high nitrogen stainless steels in acidic chloride solutions[J]. Electrochim. Acta, 2009, 54: 4005
[8] Baba H, Katada Y.Effect of nitrogen on crevice corrosion in austenitic stainless steel[J]. Corros. Sci., 2006, 48(9): 2510
[9] Wu X Q, Xu S, Huang J B, et al.Uniform and intergranular corrosion behavior of nickel free and manganese alloyed high nitrogen stainless steels[J]. Mater. Corros., 2008, 59(8): 676
[10] Brigham R J, Tozer E W.Localized corrosion-resistance of Mn-substituted austenitic stainless steels effect of molybdenum and chromium[J]. Corrosion, 1976, 32(7): 274
[11] Lim Y S, Kim J S, Ahn S J, et al.The influences of microstructure and nitrogen alloying on pitting corrosion of type 316L and 20wt.%Mn-substituted type 316L stainless steels[J]. Corros. Sci., 2001, 43(1): 53
[12] Tzaneva B R, Fachikov L B, Raicheff R G.Pitting corrosion of Cr-Mn-N steel in sulphuric acid media[J] J. Appl. Electrochem., 2006, 36(3): 347
[13] Lu Y C, Bandy R, Clayton C R, et al.Surface enrichment of nitrogen during passivation of a highly resistant stainless steel[J]. J. Electrochem. Soc., 1983, 130(8): 1774
[14] Clayton C R, Halada G P, Kearns J R.Passivity of high-nitrogen stainless alloys: the role of metal oxyanions and salt films[J]. Mater. Sci. Eng., 1995, A198(1/2): 135
[15] Ha H Y, Lee T H, Oh C S, et al.Effects of combined addition of carbon and nitrogen on pitting corrosion behavior of Fe-18Cr-10Mn alloys[J]. Scripta Mater., 2009, 61: 121
[16] Olefjord I, Clayton C R.Surface-composition of stainless-steel during active dissolution and passivation[J]. ISIJ Int., 1991, 31(2): 134
[17] Barbucci A, Cerisola G, Cabot P L.Effect of cold-working in the passive behavior of 304 stainless steel in sulfate media[J]. J. Electrochem. Soc., 2002, 149: 534
[18] Hoar T P, Jacobs W R.Breakdown of passivity of stainless steel by halide ions[J]. Nature, 1967, 216: 1299
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[4] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[5] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[6] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[7] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[8] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[9] 安朋亮, 梁平, 任建民, 史艳华, 刘峰, 陈思瑶. 高氮奥氏体不锈钢点蚀行为的电化学噪声特征[J]. 中国腐蚀与防护学报, 2018, 38(1): 26-32.
[10] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[11] 严寒, 赵晴, 杜楠, 胡彦卿, 王力强, 王帅星. 镀锌层三价铬钝化成膜过程及耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[12] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[13] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[14] 张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[15] 孟向楠,陈旭,吴明,赵阳,范裕文. 静水压力对X100钢在NaHCO3+NaCl溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 219-224.