Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (6): 563-570    DOI: 10.11902/1005.4537.2014.123
  研究报告 本期目录 | 过刊浏览 |
海砂混凝土建筑的耐久性提升技术及应用研究
毛江鸿1,金伟良1,2(),张华2,许晨2,夏晋2
1. 浙江大学宁波理工学院 宁波 315100
2. 浙江大学结构工程研究所 杭州 310058
Technology for Enhancing Durability of Structures of Sea-sand Concrete and Its Application
Jianghong MAO1,Weiliang JIN1,2(),Hua ZHANG2,Chen XU2,Jin XIA2
1. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
2. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
全文: PDF(865 KB)   HTML
摘要: 

对海砂海水浇筑的钢筋混凝土板进行了双向电渗实验。结果表明,位于电解液保持装置外侧12.0 cm处的钢筋周围均有Cl-排出和阻锈剂迁入。提出了依据电通量等效原则,通过混凝土实测及安全电压,计算工程应用所需的电流密度和通电时长。最后,对海砂混凝土建筑进行了双向电渗。结果表明,有机物浓度和有害Cl-浓度比值远大于1.0。室内实验和工程应用均表明,双向电渗起到了良好的除氯阻锈效果,为我国已存的大量海砂建筑的耐久性提升提供了一种有效手段。

关键词 混凝土海砂双向电渗电化学除氯耐久性    
Abstract

As one type of typical nondestructive technique of life extension, bi-directional electro-migration (BIEM) can enhance the durability of concrete structures, which suffered from chloride attack. During the BIEM process, rust-inhibitor can be migrated inward to the surface of steel bar while the chloride can be extracted out of the concrete cover. This paper applied the BIEM technique to reinforced concrete slabs poured with sea sand and seawater. The results showed that the migration of rust-inhibitor and the extraction of chloride could be realized for the reinforcing bars located within a range of 12 cm from the lateral side of an electrolyte maintaining device. In accordance with the electron flux equivalent principle, the needed time and current density for realizing the practical engineering applications could be calculated from the measured voltage and safety voltage of concrete. A trial application of BIEM to several engineering concrete structures with sea sand proved that the ratio of organics content to the chloride concentration was far above 1.0. Consequently, both of the laboratory experiment and the engineering applicant indicated that BIEM technique could play an excellent role in chloride extraction and rust resistance, thus could act as an effective method for enhancing the durability of the existed sea sand containing structures.

Key wordsconcrete    sea sand    bi-directional electro-migration rehabilitation    electro-chemical chloride removal    durability
    
基金资助:国家自然科学基金重大国际合作项目 (50920105806),国家自然科学基金项目 (51408544和51408534),浙江省自然科学基金项目 (LQ14E080007),宁波市科技服务业示范项目 (2014F10016)及宁波市科技创新团队项目 (2011B81005) 资助

引用本文:

毛江鸿,金伟良,张华,许晨,夏晋. 海砂混凝土建筑的耐久性提升技术及应用研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 563-570.
Jianghong MAO, Weiliang JIN, Hua ZHANG, Chen XU, Jin XIA. Technology for Enhancing Durability of Structures of Sea-sand Concrete and Its Application. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 563-570.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.123      或      https://www.jcscp.org/CN/Y2015/V35/I6/563

图1  双向电渗技术原理图
图2  双向电渗室内实验布置
Plate
number
Device
number
Steel bar number Section
area / m2
Main bar Stirrup
I 1 6 3 0.18
2 6 3 0.18
3 5 3 0.16
II 1 5 3 0.16
2 5 3 0.16
3 5 4 0.17
表1  室内实验双向电渗控制参数设计
图3  电解液中Cl-浓度检测曲线 (方法I)
图4  混凝土电阻检测曲线 (方法II)
图5  双向电渗效果评估取样点分布图
图6  装置内部Cl-分布图
图7  装置外侧Cl-分布图
Position of
sampling point
Inhibitors concentration Chloride concentration Ratio
(N/Cl-)
% mol/g % mol/g
Right 2.5 cm 0.016 2.770×10-6 0.013 3.662×10-6 0.76
Right 5.0 cm 0.013 2.395×10-6 0.021 5.775×10-6 0.41
Right 7.5 cm 0.012 2.195×10-6 0.024 6.732×10-6 0.33
Right 10.0 cm 0.012 2.089×10-6 0.029 8.085×10-6 0.26
Right 12.5 cm 0.010 1.822×10-6 0.024 6.789×10-6 0.27
Inside device 0.025 4.499×10-6 0.013 3.549×10-6 1.27
Left 2.5 cm 0.025 4.475×10-6 0.012 3.408×10-6 1.31
Left 10.0 cm 0.008 1.512×10-6 0.025 7.155×10-6 0.21
Left 12.5 cm 0.016 2.786×10-6 0.031 8.732×10-6 0.32
表2  双向电渗后阻锈剂迁入浓度表
Position Steel bar number Section
area / m2
Main bar Stirrup
Column-1 3 4 0.1628
Column-2 3 4 0.1628
Wall-1 4 4 0.1929
Wall-2 3 4 0.1628
Wall-3 4 4 0.1929
Wall-4 3 3 0.1447
表3  工程实际的双向电渗设计参数表
图8  双向电渗工程应用现场
图9  上柱取样点详图
Distance from concrete surface / mm Position of sample point Cl- N N/Cl-
5 Inside of device 0.03 0.21 4.44
Outside of device 0.02 0.36 11.41
10 Inside of device 0.04 0.22 3.49
Outside of device 0.06 0.32 3.38
15 Inside of device 0.03 0.25 5.28
Outside of device 0.03 0.31 6.55
20 Inside of device 0.03 0.27 5.71
Outside of device 0.03 0.37 7.82
25 Inside of device 0.03 0.21 4.44
Outside of device 0.04 0.34 5.39
30 Inside of device --- --- ---
Outside of device 0.03 0.46 9.72
表4  实际工程双向电渗后Cl-及N浓度汇总表
[1] JGJ206-2010. Technical specification for sea sand concrete[S]
[1] (JGJ206-2010. 海砂混凝土应用技术规范[S])
[2] Wang S X, Lin W W, Zhang J Q, et al.Corrosion inhibition behavior of diethylenetriamine/thiourea adduct for steel reinforcements in concrete[J]. J. Chin. Soc. Corros. Prot., 2000, 22(1): 15
[2] (王胜先, 林薇薇, 张鉴清等. 硫脲-二乙烯三胺缩聚物对混凝土中钢筋的缓蚀作用[J]. 中国腐蚀与防护学报, 2000, 22(1): 15)
[3] Zhou J L, Ou Z W, Jiang S Y, et al.Discussion of rebar-protecting properties of seawater-seasand concrete mixed with admixture and corrosion inhibitor[J]. J. Build. Mater., 2012, 15(1): 69
[3] (周俊龙, 欧忠文, 江世永等. 掺阻锈剂掺合料海水海砂混凝土护筋性探讨[J]. 建筑材料学报, 2012, 15(1): 69)
[4] Yang C H, Zhang H, Ou Z W, et al.Corrosion inhibitor for concrete based on seawater and sea sands[J]. Concrete, 2010, (11): 69
[4] (杨长辉, 张航, 欧忠文等. 适用于海水海砂混凝土的阻锈剂[J]. 混凝土, 2010, (11): 69)
[5] Zheng R Y, Yuan L L, He Z M.Sea sand corrosion to reinforced concrete and countermeasure in Ningbo[J]. Concrete, 2004,(10): 22, 2004, (10): 22)
[6] JTS153-2-2012. Technical specification for electrochemical anticorrosion of reinforcement concrete structures in harbour and marine engineering[S]
[6] (JTS153-2-2012. 海港工程钢筋混凝土结构电化学防腐技术规范[S])
[7] Fajardo G, Escadeillas G, Arliguie G.Electrochemical chloride extraction (ECE) from steel-reinforced concrete specimens contaminated by “artificial” sea-water[J]. Corros. Sci., 2006, 48(1): 110
[8] Tang J W, Li S L, Cai W C, et al.Investigation of inhibitor electromigration anticorrosion technology on reinforced concrete[J]. OceanEng., 2008, 26(3): 83
[8] (唐军务, 李森林, 蔡伟成等. 钢筋混凝土结构电渗阻锈技术研究[J]. 海洋工程, 2008, 26(3): 83)
[9] Kubo J, Sawada S, Page C L, et al.Electrochemical inhibitor injection for control of reinforcement corrosion in carbonated concrete[J]. Mater. Corros., 2008, 59(2): 107
[10] Sawada S, Page C L, Page M M.Electrochemical injection of organic corrosion inhibitors into concrete[J]. Corros. Sci., 2005, 47(8): 2063
[11] Zhang S Y.A study of corrosion inhibitors for bidi-rectional electromigration rehabilitation [D]. Hangzhou: Zhejiang University, 2012)
[11] (章思颖. 应用于双向电渗技术的电迁移型阻锈剂的筛选 [D]. 杭州: 浙江大学, 2012)
[12] Guo Z.A study of triethylenetetramine corrosion inhibitor for bilateral electro-osmotic method [D]. Hangzhou: Zhejiang University, 2013
[12] (郭柱. 三乙烯四胺阻锈剂双向电渗效果研究 [D]. 杭州: 浙江大学, 2013)
[13] Huang N.Remediation effect and other influence of bi-directional electro-migration rehabilitation on RC with chloride remediation effect and other influence of bi-directional electro-migration rehabilitation on RC with chloride [D]. Hangzhou: Zhejiang University, 2014
[13] (黄楠. 双向电渗对氯盐侵蚀钢筋混凝土结构的修复效果及综合影响 [D]. 杭州: 浙江大学, 2014)
[14] JY/T017-1996. General rules for elemental analyzer[S]
[14] (JY/T017-1996. 元素分析仪方法通则[S])
[1] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[4] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[6] 陈云翔, 冯丽娟, 蔡建宾, 王璇, 洪毅成, 林德源, 庄建煌, 杨怀玉. 新型复配阻锈剂在混凝土模拟液和试块中对钢筋锈蚀的抑制[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[7] 田雪凯, 王海龙, 程旭东, 孙晓燕. 混凝土裂缝形态参数对Cl-传输性能影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 309-316.
[8] 苗伟行,胡文彬,高志明,孔宪刚,赵茹,唐军务. 304不锈钢在海洋环境混凝土模拟液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[9] 张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[10] 冯兴国,卢向雨,左禹,陈达. 应变对混凝土孔隙液中不锈钢钝化性能影响的电化学研究[J]. 中国腐蚀与防护学报, 2015, 35(4): 372-378.
[11] 程旭东, 孙连方, 曹志烽, 朱兴吉, 赵立新. 沿海钢筋混凝土结构Cl-侵蚀数值模拟方法研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[12] 岳著文, 李镜培, 杨博, 邵伟, 吕韬. Cl-在钢筋混凝土板一维双向扩散的分离变量法解答[J]. 中国腐蚀与防护学报, 2014, 34(1): 95-100.
[13] 杜雅莉, 张俊喜, 蒋俊, 原徐杰, 王灵芝, 马行驰. Cl-浓度渐变的混凝土孔隙液中钢筋的腐蚀过程[J]. 中国腐蚀与防护学报, 2013, 33(4): 331-338.
[14] 许晨 岳增国 金伟良. 电化学频率调制技术在混凝土钢筋锈蚀中的应用[J]. 中国腐蚀与防护学报, 2013, 33(2): 136-140.
[15] 岳汉威,马振珠,包亦望. 冲击球压法研究混凝土表面的腐蚀损伤[J]. 中国腐蚀与防护学报, 2011, 31(4): 309-314.