Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (5): 447-454    DOI: 10.11902/1005.4537.2014.226
  本期目录 | 过刊浏览 |
装载缓蚀剂的纳米SiO2对环氧涂层耐腐蚀性的影响
孙伟1,尹桂来2,刘福春1(),唐囡2,韩恩厚1,万军彪2,柯伟1,邓静伟2
2. 国网江西省电力科学研究院 南昌 330096
Influence of Corrosion Inhibitor Carriered Nano-SiO2 on Corrosion Resistance of Epoxy Coating
Wei SUN1,Guilai YIN2,Fuchun LIU1(),Nan TANG2,En-Hou HAN1,Junbiao WAN2,Wei KE1,Jingwei DENG2
1. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, China
全文: PDF(3065 KB)   HTML
  
摘要: 

以SiO2作为载体,将缓蚀剂8-羟基喹啉在纳米SiO2中进行负载,负载后的粉体采用红外光谱和紫外吸收光谱进行表征。将装载后的纳米SiO2粉体加入到环氧涂料中,制备出含装载缓释剂8-羟基喹啉的纳米SiO2的环氧树脂涂层,通过盐雾实验和电化学阻抗谱实验测试其对环氧涂层耐蚀性的影响。结果表明,缓蚀剂8-羟基喹啉成功装载到SiO2孔道中,纳米SiO2装载缓释剂8-羟基喹啉提高了环氧涂层的耐蚀性,其中添加5% (质量分数) SiO2装载缓蚀剂8-羟基喹啉粉体的环氧涂层耐蚀性最高,原因是缓蚀剂8-羟基喹啉从SiO2孔道中释放到涂层并渗透到基体表面,对基体起到缓蚀作用,提高了涂层的耐腐蚀性能。

关键词 8-羟基喹啉纳米SiO2环氧涂层输变电设备防腐蚀材料    
Abstract

The 8-hydroxyquinoline (8Q), as a sustained-release corrosion inhibitor was deposited onto nano-particles of mesoporous-silica to prepare 8-hydroxyquinoline-silica (8Q-SiO2) powder. Then the powder was used as pigment to modify epoxy resin to prepare 8Q-SiO2-epoxy resin coating. The prepared 8Q-SiO2 was characterized by means of infrared spectrum and ultraviolet absorption spectrum. The corrosion performance of the 8Q-SiO2-epoxy resin coating was examined by salt spray test and electrochemical impedance measurement. The results revealed that the 8Q can enhance the corrosion resistance of epoxy coating, and among others the epoxy coating with 5% (mass fraction) 8Q-SiO2 exhibits the highest corrosion resistance, which may be ascribed to that the 8Q may slowly release from the mesoscopic channels within SiO2 into the epoxy coating and then arrive at the interface coating/substrate to provide corrosion inhibition for the substrate.

Key words8-hydroxy quinoline    nano-silica    epoxy coating    electric transmission and transformation equipment    anticorrosive material
    
ZTFLH:     
基金资助:国家电网公司科技项目(521820130014),国家重点基础研究发展计划项目 (2014CB643304) 和广东省中国电器院风电装备腐蚀控制关键技术院士工作站项目 (2013B090400023) 资助

引用本文:

孙伟, 尹桂来, 刘福春, 唐囡, 韩恩厚, 万军彪, 柯伟, 邓静伟. 装载缓蚀剂的纳米SiO2对环氧涂层耐腐蚀性的影响[J]. 中国腐蚀与防护学报, 2015, 35(5): 447-454.
Wei SUN, Guilai YIN, Fuchun LIU, Nan TANG, En-Hou HAN, Junbiao WAN, Wei KE, Jingwei DENG. Influence of Corrosion Inhibitor Carriered Nano-SiO2 on Corrosion Resistance of Epoxy Coating. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 447-454.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.226      或      https://www.jcscp.org/CN/Y2015/V35/I5/447

图1  SiO2, 8Q和8Q-SiO2的红外光谱
图2  SiO2和8Q-SiO2的热重曲线
图3  8Q-SiO2和纳米SiO2的N2吸附-脱附等温线
Sample Average pore diameter / nm Surface area m2g-1 Pore volume cm3g-1
SiO2 13.724 146.209 0.502
8Q-SiO2 12.707 142.436 0.452
表1  吸附材料的物理性质
图4  8Q和8Q-SiO2的紫外吸收曲线
Sample 1 2 3 4 5 Mean
Z0 2.3 2.3 2.2 2.3 2.4 2.3
Z1 3.4 3.3 3.4 3.5 3.4 3.4
Z3 3.8 3.7 3.8 3.6 3.7 3.7
Z5 3.9 4.2 4.2 4.3 4.4 4.2
表2  Z0, Z1, Z3和Z5 4种涂层的拉开法附着力测试结果
图5  涂层试样盐雾实验2000 h后的表面形貌
Sample Small bubbles area / % Mid-bubbles area / % Big bubbles area / % Maximum width of corrosion expansion / mm
Z0 0 0 15 15
Z1 0 13 0 11
Z3 4 9 0 8.5
Z5 7 2 0 5
表3  盐雾实验2000 h后涂层试样的腐蚀情况
图6  盐雾实验2000 h后涂层试样划痕横截面部位的SEM像
图7  盐雾实验后涂层试样划痕部位的锈蚀产物EDX结果
图8  不同8Q-SiO2含量的涂层试样在不同浸泡时间的Bode图
图9  等效电路图
图10  涂层电阻随浸泡时间的变化
图11  涂层吸水率随浸泡时间的变化
图12  8Q在纳米SiO2粉体中的释放机理
[1] Kartsonakis I, Daniilidis I, Kordas G. Encapsulation of the corrosion inhibitor 8-Hydroxy-quinoline into ceria nanocontainers[J]. J.Sol-Gel Sci. Technol., 2008, 48: 24
[2] Chen T, Jia J. An intelligent anticorrosion coating based on pH-responsive supramolecular nanocontainers[J]. Nanotechnology, 2012,23: 505705
[3] Baghdachi J, Provder T. Smart Coatings III [M]. Washington, DC: ACS Symposium Series, American Chemical Society, 2010
[4] A?ssa B, Therriault D, Haddad E, et al. Self-healing materials systems, overview of major approaches and recent developed technologies[J]. Adv. Mater. Sci. Eng., 2012, 2012: 854203
[5] Swapan K G. Self-healing Materials Fundamentals, Design Strategies, and Applications [M]. New Delhi: Wiley-Vch. Verlag GmbH & Co. KGaA, 2009
[6] Voevodin N N, Grebasch N T, Soto W S, et al. Potentiodynamic evaluation of solgel coatings with inorganic inhibitors[J]. Surf. Coat. Technol., 2001, 140: 24
[7] Lamaka S V, Montemor M F, Galio A F, et al. Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy[J]. Electrochim. Acta, 2008, 53: 4773
[8] Heming W, Robert A. Encapsulated cerium nitrate inhibitors to provide high-performance anti-corrosion solgel coatings on mild steel[J]. Corros. Sci., 2008, 50: 1142
[9] Khramov A N, Voevodin N N, Balbyshev V N, et al. Hybrid organoceramic corrosion protection coatings with encapsulated organic corrosion inhibitors[J]. Thin Solid Films, 2004, 447/448: 549
[10] Yan J, Buckley A M, Greenblatt M. The preparation and characterization of silica gels doped with copper complexes[J]. J. Non-Cryst. Solids, 1995, 180: 180
[11] Cai W P, Tan M, Wang G Z, et al. Preparation of silver / silica mesoporous composite[J]. Chin. Sci. Bull., 1997, 42(2): 150 (蔡伟平, 谭铭, 汪国忠等. 银/二氧化硅介孔复合体的制备[J]. 科学通报, 1997, 42(2): 150)
[12] Bruni S, Cariati P, Casu M, et al. IR and NMR study of nanoparticle support interaction in a Fe2O3-SiO2 nanocomposite prepared by a solgel method[J]. Nanostruct. Mater., 1999, 11(5): 573
[13] Zuo M X, Huang Z J, Zhang Y M. Modification of nano silica in dispersion of coatings[J]. New Chem. Mater., 2000, 11(28): 22 (左美祥, 黄志杰, 张玉敏. 纳米SiOx在涂料中的应用[J]. 现代涂料与涂装, 2000, 11(28): 22
[14] Saremi M, Yeganeh M. Application of mesoporous silica nanocontainers as smart host of corrosion inhibitor in polypyrrole coatings[J]. Corros. Sci., 2014, 86: 159
[15] Montemor M F, Snihirova D V, Taryba M G, et al. Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors[J]. Electrochim. Acta, 2012, 60: 31
[16] Wang J C, Yang K, Zheng X Y. Study on the organic modification of montmorillonite and its structure and properties[J]. Chem. Miner. Process, 2010, (7): 11 (王锦成, 杨科, 郑晓昱. 蒙脱土的有机化改性及其结构与性能研究[J]. 化工矿物与加工, 2010, (7): 11)
[17] Brasher M D, Kingsbury A H. Electrical measurements in the study of immersed paint coatings on metal. I. Comparison between capacitance and gravimetric methods of estimating water-uptake[J]. J. Appl. Chem., 1954, 4: 62
[1] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[2] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[3] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[4] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[5] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[6] 高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[7] 张山,周丽娜,简璐,王煦. 聚苯胺/TiO2/环氧涂层的制备及耐蚀性研究[J]. 中国腐蚀与防护学报, 2016, 36(1): 59-66.
[8] 周兵, 唐囡, 张颖君, 毛亮, 王艳秋, 邵亚薇, 孟国哲. 镀锌钢表面高附着环氧清漆的研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.
[9] 元辛, 岳珠峰, 温世峰, 李磊. 铝合金表面有机硅环氧涂层的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 375-381.
[10] 刘樱,刘莉,李瑛,王福会. 高静水压力对水在环氧涂层中传输行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 203-209.
[11] 石秋梅,邵亚薇,张涛,孟国哲,陈琪昊. 磷酸锌对环氧涂层划痕的保护尺寸研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 389-394.
[12] 唐俊文,邵亚薇,张涛,孟国哲,王福会. 循环压力对环氧涂层在模拟深海环境中失效行为的影响[J]. 中国腐蚀与防护学报, 2011, 31(4): 275-281.
[13] 曹佳 邵亚薇 张涛 孟国哲. 磷酸锌对环氧涂层破损处金属的缓蚀作用[J]. 中国腐蚀与防护学报, 2009, 29(6): 437-441.
[14] 田惠文 李伟华 宗成中 侯保荣. 纳米SiO2改性环氧涂层的防腐性能[J]. 中国腐蚀与防护学报, 2009, 29(5): 365-370.
[15] 邵亚薇; 严川伟; 杜元龙; 王福会 . 钛酸酯偶联剂对纳米Ti粉在环氧树脂中分散性的影响[J]. 中国腐蚀与防护学报, 2005, 25(4): 232-236 .